CITY OF ATASCADERO
COMMUNITY DEVELOPMENT DEPARTMENT

Notice of Intent to Adopt
Mitigated Negative Declaration

<table>
<thead>
<tr>
<th>PROJECT NO.</th>
<th>DEV20-0076</th>
<th>Environmental Document No.</th>
<th>2021-0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT TITLE</td>
<td>Mini Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPLICANT NAME & PHONE NUMBER</td>
<td>Scott Newton 559-285-6214</td>
<td>Email scott@sole2soulsports.com</td>
<td></td>
</tr>
<tr>
<td>MAILING ADDRESS:</td>
<td>215 Santa Fe Rd Pismo Beach, CA 93449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAFF CONTACT:</td>
<td>Kelly Gleason (805) 470-3446 kgleason@atascadero.org</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROJECT ADDRESS:</td>
<td>11450 Viejo Camino 11505 El Camino Real Atascadero, CA 93422 APN: 045-342-009 045-342-010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROJECT DESCRIPTION:
The project is a 56,330 square foot mini-storage facility on a 4.2-acre site, which includes indoor storage units, a community space, and a workshop in a total of 5 buildings. Paved drive aisles and eighteen (18) parking spaces are included. The project site is designated with 1.8 acres of wetland habitat however, recent drought conditions and annual animal grazing have denuded the habitat vegetation. The property contains an identified ephemeral blue-line creek (tributary of Paloma Creek) with a clearly defined flow path. Water enters the site from an existing culvert under El Camino Real and exits through existing culverts under Viejo Camino. The applicant proposes to realign the creek to accommodate the site development and adjust the flood plain designation of the site. The realigned creek channel will be constructed with a naturalized slope on each side bordered by a retaining wall for the development pad on one side and a pedestrian path above a City sewer easement on the other side. The project requires California Department of Fish and Wildlife, Army Corps of Engineers, Regional Water Quality Control Board, and Federal Emergency Management Agency review.

One of the existing properties is currently developed with a single-family residence. The project includes merging the existing lots to allow for the proposed development.

General Plan Designation: Public Facilities (PUB)
Zoning District: Public (P)

LEAD AGENCY: City of Atascadero
Community Development Department
6500 Palma Avenue
Atascadero, CA 93422

DOCUMENT AVAILABLE ONLINE: http://www.atascadero.org/environmentaldocs
STATE CLEARING HOUSE REVIEW: ☒ Yes NO □
REVIEW PERIOD BEGINS: 03/15/2021 REVIEW PERIOD ENDS: 04/14/2021
PUBLIC HEARING REQUIRED: □ No ☒ Yes
PUBLIC NOTICE: The City of Atascadero is releasing a draft Initial Study and Mitigated Negative declaration for review and comment to all affected agencies, organizations, and interested parties. Reviewers should focus on the content and accuracy of the report and the potential impacts upon the environment. The notice for this project is in compliance with the California Environmental Quality Act (CEQA). Persons responding to this notice are urged to submit their comments in writing. Written comments should be delivered the City (lead agency) no later than 5pm on the date listed as "review period ends". Submittal of written comments via
email is also accepted and should be directed to the Staff contact at the above email address. This document may be viewed by visiting the Community Development Department, listed under the lead agency address, or accessed via the City's website.
CITY OF ATASCADERO
COMMUNITY DEVELOPMENT DEPARTMENT

Initial Study Summary – Environmental Checklist

PROJECT NO. DEV20-0076 Environmental Document No. 2021-0001

PROJECT TITLE: Mini Storage

Environmental Factors Potentially Affected: The proposed project could have a “Potentially Significant Impact” for at least one of the environmental factors checked below. Please refer to the attached pages for discussion on mitigation measures or project revisions to either reduce these impacts to less than significant levels or require further analysis.

☐ Aesthetics ☐ Greenhouse Gas Emissions ☐ Recreation
☒ Agricultural Resources ☐ Hazards / Hazardous Materials ☐ Transportation
☐ Air Quality ☒ Water / Hydrology ☒ Tribal Cultural Resources
☒ Biological Resources ☒ Land Use/Planning ☒ Mineral Resources
☐ Cultural Resources ☐ Noise ☐ Utility / Service Systems
☒ Energy ☒ Population / Housing ☒ Wildfire
☒ Geology and Soils ☐ Public Services / Utilities

DETERMINATION: (To be completed by the Lead Agency)

On the basis of this initial evaluation, the Community Development Director finds that:

☐ The proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

☒ Although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

☐ The proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

☐ the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

☐ Although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.
PROJECT ENVIRONMENTAL ANALYSIS

The City of Atascadero’s environmental review process incorporates all of the requirements for completing the Initial Study as required by the California Environmental Quality Act (CEQA) and the CEQA Guidelines. The Initial Study includes Staff’s on-site inspection of the project site and surrounding and a detailed review of the information on file for the proposed project. In addition, available background information is reviewed for each project. Relevant information regarding soil types and characteristics, geological information, significant vegetation and/or wildlife resources, water availability, wastewater disposal service, existing land uses and surrounding land use categories and other information relevant to the environmental review process are evaluated for each project. Exhibit A includes the references used, as well as the agencies or groups that were contacted as a part of this initial study. The City of Atascadero uses the checklist to summarize the results of the research accomplished during the initial environmental review of the project.

Persons, agencies, or organizations interested in obtaining more information regarding the environmental review process for a project should contact the Community Development Department, 6500 Palma Avenue, Atascadero, CA 93422 or call (805) 461-5000.

A. PROPOSED PROJECT

Description:	The project is a 56,330 square foot mini-storage facility on a 4.2-acre site, which includes indoor storage units, a community space, and a workshop in a total of 5 buildings. Paved drive aisles and eighteen (18) parking spaces are included. The project site is designated with 1.8 acres of wetland habitat however; recent drought conditions and annual animal grazing have denuded the habitat vegetation. The property contains an identified ephemeral blue-line creek (tributary of Paloma Creek) with a clearly defined flow path. Water enters the site from an existing culvert under El Camino Real and exits through existing culverts under Viejo Camino. The applicant proposes to realign the creek to accommodate the site development and adjust the flood plain designation of the site. The realigned creek channel will be constructed with a naturalized slope on each side bordered by a retaining wall for the development pad on one side and a pedestrian path above a City sewer easement on the other side. The project requires California Department of Fish and Wildlife, Army Corps of Engineers, Regional Water Quality Control Board, and Federal Emergency Management Agency review. One of the existing properties is currently developed with a single-family residence. The project includes merging the existing lots to allow for the proposed development.
General Plan Designation:	Public Facilities (PUB)
Zoning District:	Public (P)

| Legal Description: | THAT PORTION OF LOT 7 OF BLOCK 66 OF ATASCADERO COLONY, IN THE CITY OF ATASCADERO, COUNTY OF SAN LUIS OBISPO, STATE OF CALIFORNIA, ACCORDING TO MAP RECORDED OCTOBER 14, 1914 IN BOOK 3, PAGE 97 OF MAPS, AND AS SHOWN ON THE RECORD OF SURVEY MAP RECORDED MARCH 26, 1980 IN BOOK 37, PAGE 69 OF RECORDS OF SURVEYS |

| | ALL THAT PORTION OF THAT PART OF LOTS 5 AND 6 IN BLOCK 66 OF ATASCADERO COLONY, IN THE CITY OF ATASCADERO, COUNTY OF SAN LUIS OBISPO, STATE OF CALIFORNIA, ACCORDING TO MAP RECORDED OCTOBER 21, 1914 IN BOOK 3 PAGE 1 ET SEQ., OF MAPS, WHICH WAS CONVEYED TO GERTRUDE HOPPER, BY DEED RECORDED SEPTEMBER 13, 1918 IN BOOK 117, PAGE 331 OF DEEDS, WHICH LIES NORTHEASTERLY OF THE NORTHEASTERLY LINE OF THE RIGHT OF WAY FOR STATE HIGHWAY PURPOSES CONVEYED TO |
Assessor parcel number(s): 045-342-009, 045-341-010

Latitude: 5,776.235
Longitude: 2,361.703

Other public agencies whose approval is required: California Department of Fish and Wildlife (DFW), Army Corps of Engineers (ACE), Water Quality Control Board (WQCB), Federal Emergency Management Agency (FEMA)

B.EXISTING SETTING

Land use designation: Public Facilities

Zoning district: Public

Parcel size: 4.2 acres

Topography: Flat
Average Slope: <5% with 12-15% at the location of the existing residence

Vegetation: Annual grasses

Existing use:
- 11450 Viejo Camino: Single Family Residence
- 11505 El Camino Real: Vacant Lot

Surrounding land use: Paloma Park, Residential, Churches and other related facilities, School

<table>
<thead>
<tr>
<th>North:</th>
<th>South:</th>
<th>East:</th>
<th>West:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>Public Zone</td>
<td>Recreation</td>
<td>Residential PUD</td>
</tr>
<tr>
<td>Multi-Family</td>
<td>Existing Residence</td>
<td>Multi-Family</td>
<td>Open Space</td>
</tr>
</tbody>
</table>
C. ENVIRONMENTAL ANALYSIS
During the initial study process, at least one issue was identified as having a potentially significant environmental effect (see following Initial Study). The potentially significant items associated with the proposed project can be minimized to less than significant levels.

CITY OF ATASCADERO
INITIAL STUDY CHECKLIST

1. AESTHETICS – Will the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant</th>
<th>Impact</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect on an adopted scenic vista?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?</td>
<td>☑</td>
<td>☐</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>c) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>☐</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

EXISTING SETTING:
The City of Atascadero reviews all new projects for appropriate building design. New projects must have a design that is sensible within the context of the community. The design must be similar or complimentary to the surrounding developments. Additionally, developers must consider how a project may affect historical and natural resources in and around their site. The promotion of purposeful design helps preserve community character and aesthetic as well as prevent negative impacts on surrounding property values.

The subject properties total 4.2-acres consisting of one undeveloped parcel and one single family residential parcel which are both located in the Public (P) zoning district just south of the Viejo Camino and El Camino Real intersection. The surrounding area is composed of mostly Multi-Family Residential, and Public zoning designations. There is also approximately 2.2 acres of public recreational facilities just south east of the project boundary, across Viejo Camino Rd. There is an existing Historic Colony Home adjacent to the project site. The property is located in the Paloma Creek watershed. The property contains historic designated wetland habitat and has historically had flooding occur during wet years.

The General Plan Land Use, Open Space, and Conservation Element provide policies regarding the preservation of natural habitats and the rural character in Atascadero.
PROPOSED PROJECT:
The project is a mini-storage facility with more than 56,000 square feet of storage buildings, community assembly space, and workshop in a total of 5 buildings. Paved drive aisles and approximately 18 parking spaces are included. The subject properties are a combined total of 4.2 acres. One of the existing properties is currently developed with a single family residence. The proposed use includes transparent perimeter fencing with landscaping to screen the storage buildings. The realigned creek and potential wetland restoration and/or drainage retention area are proposed for the southern portion of the property adjacent to the existing Historic Colony Home on the adjacent property.

The Atascadero General Plan and Atascadero Municipal Code (AMC) provide thresholds of significance for the aesthetic qualities of new developments. The General Plan Land Use Conservation Element Policies 1.4 and 2.1 specify the avoidance of light pollution and compatibility with existing surrounding neighborhoods. Section 9.4.137 of the AMC regulates exterior lighting to avoid light pollution onto neighboring properties.

The Atascadero Municipal Code requires that any exterior lighting by fully shielded and directed in such a way that no glare occurs and that no light source is visible from off-site. All proposed lighting must comply with this code requirement. The City focuses on maintaining a rural character and this is partly achieved by minimizing street lights to only those areas where a need is dictated by safety. There are currently no street lights along the project frontage on El Camino Real and none along the Viejo Camino Frontage. Overall surrounding ambient lighting is relatively low and only includes minimal building mounted lighting on adjacent commercial and residential developments.

AES Impact-1: The nature of the proposed mini-storage use provides largely fenced in site with minimal interaction along the street edge, thus, safety lighting is expected, and therefore, this impact requires mitigation.

MITIGATION / CONCLUSION:

AES 1.1: All exterior lights shall be turned off between the hours of 11pm and 6am. Lights may turn on when motion is sensed. All lighting must be dimmable to maintain the low light levels of the surrounding residential and open space areas.

2. AGRICULTURE RESOURCES – Will the project:

<table>
<thead>
<tr>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland) to nonagricultural use?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Conflict with existing zoning for, or cause rezoning of, forest land, timberland or timberland zoned Timberland Production?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>
EXISTING SETTING:
Preservation of agricultural lands is important to the State of California as they provide economic benefits and important ecosystem services. Historically, urban development in the state has correlated with diminishing farmlands. This trend has led to various legislative measures at the state and local levels to protect vulnerable agricultural resources (California Department of Food and Agriculture, 2015). The California State Department of Conservation identifies, categorizes, and helps preserve important farmland. Their Farmland Mapping and Monitoring Program tracks and maps the conversion of farmland into urban development. In particular, those areas that fall under the categories of “Prime Farmland,” “Farmland of Statewide Importance,” or “Unique Farmland” may have an opportunity to receive state funding or take advantage of incentive programs for the if preservation.

Currently, the subject underdeveloped properties total 4.2 acres and are located in the Public zoning district. The properties are surrounded by development and are located between El Camino Real and Viejo Camino. The surrounding parcels include residential, commercial, parks, and quasi-public uses. The site contains historically designated wetland habitat and an identified ephemeral creek (tributary of Paloma Creek) that flows onward to the Salinas River ¼ mile to the east. The site has historically been grazed for weed control.

The project site is not designated as farmland by the California State Department of Conservation and has minimal agricultural potential based on the creek and wetland presence (Figure 6).

PROPOSED PROJECT:
The applicant is proposing a 56,000+ square foot indoor mini-storage facility with community assembly space and associated improvements. The project is located in a flood hazard area and portions are within the 100-year flood plain. The proposal includes modifications to the flood plain, flood way, and realignment of the identified ephemeral creek.

The site is categorized as “Urban and Built-Up Land” by the California Department of Conservation (Figure 6).

MITIGATION / CONCLUSION:
There are no impacts expected to occur to identified Agricultural resources.
3. **AIR QUALITY – Will the project:**

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Impact Requires Mitigation</th>
<th>Insufficient Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Violate any air quality standard or contribute substantially to an existing or projected violation?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING SETTING:

All new developments have impacts on local air quality that vary in extent depending on construction practices, land use, size, and vehicle trip generation. Poor air quality can have adverse effects on public health including increases in cardio respiratory diseases (World Health Organization, 2018). The City of Atascadero and the San Luis Obispo County Air Pollution Control District (SLOAPCD) work to create policies and programs to maintain air quality in a healthy state. Furthermore, the Federal Environmental Protection Agency (EPA) helps regional agencies monitor and regulate air quality by identifying and classifying target air pollutants.

The existing site is composed of two parcels which span approximately 4.2 acres of land in the Public zoning district, south of the El Camino Real and Viejo Camino Road intersection. There is currently a single family residence developed on one of the parcels and the other remains undeveloped. The surrounding parcels include residential, commercial, parks, and quasi-public uses.

The EPA ranks levels of specific air pollutants in a region as being at “attainment” or “nonattainment.” Nonattainment status is given to regions where the air quality does not meet the national primary or secondary standards provided in the EPA Green Book. According to SLOAPCD, San Luis Obispo County is at nonattainment for ozone (O2) and respiratory particulate matter (PM10) (Table 1). Atascadero General Plan Land Use, Open Space and Conservation Element program 10.3.1 requires dust control and emissions regulation during the construction phases of any project. The associated policy aims to support regional efforts to maintain clean air.
SLO County APCD provides operational and construction screening criteria for new projects to analyze them for potential impacts. These criteria are used to predict the gravity of impacts from additional Ozone (O2) and greenhouse gas emissions generated with a new project (SLOAPCD, 2017). According to SLOAPCD, a new ministorage facility would need to be 467,000 square feet in size to meet the significance threshold for Ozone Precursors.

PROPOSED PROJECT:
The applicant is proposing to develop a ministorage facility with more than 56,000 square feet of indoor facilities including a caretaker’s residence associated site improvements. The project will require grading of approximately 3 acres with the additional acreage reserved for any wetland restoration and/or stormwater compliance improvements. Additionally, the project site is within 1,000 feet of single family residences, apartment buildings, and three parks (Figure 7).

Table 2 below from the CEQA Air Quality Handbook (2012) and 2017 clarification memo provides threshold significance of 2.5/Tons for PM10 for construction operations of any new project. The document also states that any grading of an area larger than 4 acres or within 1,000 feet of sensitive receptors requires mitigation. Sensitive receptor locations include spaces where the youth, elderly, and other vulnerable populations may spend a considerable amount of time including, but not limited to, residences, schools, parks, hospitals, and daycare centers.

AQ Impact-1: The San Luis Obispo County Air Pollution Control District (SLOAPCD) reports that the county is at nonattainment for Ozone (O3) emissions. They provide a 447,000 square foot threshold of significance for storage facilities expected to contribute to Ozone Precursor emissions. The proposed project will not exceed this threshold. Since the project will not exceed 447,000 square feet, then the impact is insignificant.

AQ Impact-2: The San Luis Obispo County Air Pollution Control District (SLOAPCD) reports that the county is at nonattainment for Particulate Matter (PM10) emissions. The CEQA Air Quality Handbook (APCD, 2012) provides a 2.5 ton per quarter threshold for significance which can be met by a project with grading on greater than 4 acres. Additionally, mitigation is required for properties with 1,000 feet of sensitive receptors. The mini-storage facility and associated drainage improvements may require grading at or above the identified threshold and is located within 1,000 feet of sensitive receptors, thus, the impact requires mitigation.

MITIGATION / CONCLUSION:

AQ 2.1: Use of water trucks or sprinkler systems, in sufficient quantities to prevent airborne dust from leaving the site and from exceeding the APCD’s limit of 20% opacity for greater than 3 minutes in any 60-minute period. Increased watering frequency would be required whenever wind speeds exceed 15 mph. Reclaimed (non-potable) water should be used whenever possible. Please note that during drought conditions, water use may be a concern and the contractor or builder shall consider the use of an APCD-approved dust suppressant where feasible to reduce the amount of water used for dust control.

AQ 2.2: All dirt stock pile areas should be sprayed daily as needed.

AQ 2.3: Permanent dust control measures identified in the approved project revegetation and landscape plans should be implemented as soon as possible following completion of any soil disturbing activities. Exposed ground areas that are planned to be reworked at dates greater than one month after initial grading should be sown with a fast germinating, non-invasive grass seed and watered until vegetation is established.
AQ 2.4: All disturbed soil areas not subject to revegetation should be stabilized using approved chemical soil binders, jute netting, or other methods approved in advance by the APCD and as determined appropriate for use adjacent to waterbodies and creeks.

AQ 2.5: All roadways, driveways, sidewalks, etc. to be paved should be completed as soon as possible. In addition, building pads should be laid as soon as possible after grading unless seeding or soil binders are used.

AQ 2.6: Vehicle speed for all construction vehicles shall not exceed 15 mph on any unpaved surface at the construction site. All trucks hauling dirt, sand, soil, or other loose materials are to be covered or should maintain at least two feet of freeboard (minimum vertical distance between top of load and top of trailer) in accordance with CVC Section 23114.

AQ 2.7: “Track-Out” is defined as sand or soil that adheres to and/or agglomerates on the exterior surfaces of motor vehicles and/or equipment (including tires) that may then fall onto any highway or street as described in California Vehicle Code Section 23113 and California Water Code 13304. To prevent Track Out, designate access points and require all employees, subcontractors, and others to use them. Install and operate a “track-out prevention device” where vehicles enter and exit unpaved roads onto paved streets. The track-out prevention device can be any device or combination of devices that are effective at preventing track out, located at the point of intersection of an unpaved area and a paved road. Rumble strips or steel plate devices require periodic cleaning to be effective. If paved roadways accumulate tracked out soils, the track-out prevention device may need to be modified.

AQ 2.8: Sweep streets at the end of each day if visible soil material is carried onto adjacent paved roads. Water sweepers with reclaimed water should be used where feasible.

AQ 2.9: All of these fugitive dust mitigation measures shall be shown on grading and building plans. The contractor or builder shall designate a person or persons to monitor the fugitive dust emissions and enhance the implementation of the measures as necessary to minimize dust complaints, reduce visible emissions below 20% opacity, and to prevent transport of dust offsite. Their duties shall include holidays and weekend periods when work may not be in progress. The name and telephone number of such persons shall be provided to the APCD.

4. GREENHOUSE GAS EMISSIONS – Will the project:

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>☐ b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING SETTING:
Greenhouse gases (GHG) including carbon dioxide (CO2), Methane (CH4), Nitrous Oxide(N2O), fluorinated gases, and water vapor, can cause significant harm to the environment and have adverse effects public health. The City of Atascadero and the State of California
attempt regulate GHG emissions to promote environmental and public health as well as energy efficiency. SLO County APCD expects mini-storage facilities in excess of 267,000 square feet to exceed thresholds for GHG, as stated in the 2017 clarification to the 2012 CEQA Handbook.

The site where the mini-storage is proposed is located on a 4.2 acre site in the Public zoning district of Atascadero. The surrounding parcels include multi-family and single-family residential developments, commercial uses, parks, and quasi-public uses. Currently, one of the subject properties is undeveloped and does not contribute GHG emissions to the environment; the other is developed with a single family residence.

In 2014, the City of Atascadero adopted a climate action plan (CAP) to help guide the City in reducing their GHG emissions in accordance with California Assembly Bill 32 (AB32). AB32 aims at a reduction of 15% in GHG emissions by 2020. According to this plan, in 2005 the City of Atascadero produced 141,428 metric tons (MT) of carbon dioxide equivalent (CO2e) in GHG emissions. Commercial and Industrial land uses contributed 14% of the total emissions (Rincon Consultants, Inc., 2014). Figure 17 below shows the portion of total emissions contributed by each sector of the community in 2005. The City aims to reduce their community-wide emission levels to 120,214 MT CO2e by 2020.

PROPOSED PROJECT:
The applicant is proposing mini-storage facilities in excess of 56,000 square feet. The facility would include a community assembly space, workshop, and associated improvements. The parcels being developed total to 4.2 acres in size.

SLO County APCD provides operational and construction screening criteria for new projects to analyze them for potential impacts. These criteria are used predict the gravity of impacts from additional Ozone (O2) and greenhouse gas emissions generated with a new project (SLOAPCD, 2017). According to SLOAPCD, a new ministorange facility would need to be 267,000 square feet in size to meet the 1,150 MT of CO2e per year significance threshold for GHG emissions. The project area for the ministorage facility will be below that which is expected to exceed the threshold of significance.

The City of Atascadero CAP is the approved GHG reduction plan for the City and provides guidelines and measures to achieve the City’s reduction goal. According to the SLO Air Pollution Control District Greenhouse Gas Thresholds handbook, stationary industrial uses have an annual threshold of 10,000 MT of CO2e per year. Any projects that exceed this threshold must take action to mitigate their level of emission. The project is not expected to surpass more than 1,150 MT of CO2e per year based on the SLOAPCD screening criteria described above.

GHG Impact 1: The ministorage facility does not conflict with the City of Atascadero’s Climate Action Plan (CAP). Since there is no conflict with the adopted CAP, then the impact is insignificant.

GHG Impact 2: The ministorage facility will exceed 56,000 square feet but not surpass 267,000 square feet in building area. The San Luis Obispo County Air Pollution Control District (SLOAPCD) provides a threshold of 1,150 MT of CO2e per year which is expected to be exceeded by projects with a project area of 267,000 square feet or more (SLOAPCD, 2017). Since the project does not surpass the threshold provided by SLOAPCD, then the impact is insignificant.

MITIGATION / CONCLUSION: No further mitigation is required.
5. BIOLOGICAL RESOURCES – Will the project:

<table>
<thead>
<tr>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife (CDFW) or U.S. Fish and Wildlife Service (USFWS)?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or CDFW and USFWS?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Have a substantial adverse effect on State or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Conflict with policies or ordinances protecting biological resources, such as the native tree ordinance?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING SETTING:
The City of Atascadero as well as San Luis Obispo County and the state of California emphasize the protection of their diverse ecosystems and the vulnerable species to which they provide habitats.

The existing site is composed of two parcels which span approximately 4.2 acres of land the Public zoning district, south of the El Camino Real and Viejo Camino Road intersection. There is currently a single family residence developed on one of the parcels and the other remains undeveloped. A biological resources assessment prepared for the project site by Terra Verde Environmental Consulting provides existing biologic characteristics of the site. According to the assessment, the site hosts a blue line creek and State recognized wetlands. According to the
wetland delineation performed by Terra Verde, the existing site does not meet the criteria for federally recognized wetlands.

The site is designated with 1.8 acres of freshwater emergent wetland habitat according to the US Fish and Wildlife Service Wetland Inventory Mapper (Figure 8); however, recent drought conditions and annual animal grazing have denuded the habitat vegetation. There are existing restored wetlands to the west of the project across El Camino Real from the project site. The property also contains an identified blue-line creek with a clearly defined flow path (Figure 9). Water enters the site from an existing culvert under El Camino Real and exits through existing culverts under Viejo Camino. The site has low suitability for hosting special status species due to past land uses. However, the site may potentially serve as seasonal habitat for nesting birds and roosting bats. Nonnative plant species compose the majority of the vegetation on the site (75%) but native plant species are still present.

PROPOSED PROJECT:
The project proposes the construction of a mini-storage facility that exceeds 56,000 square feet. The facility includes a community space, workshop, and associated site improvements. The applicant proposes to realign the creek to accommodate the site development and adjust the flood plain designation of the site. A biological assessment and federal wetland assessment was completed by Terra Verde Environmental Consulting in January and March of 2019. Soil samples and hydrology were assessed at locations containing visible wetland vegetation, limiting the scope of the analysis to the creek channel. Based on this analysis, it was determined that no federal wetlands exist at the time of assessment as the test areas only met 2 of the 3 qualifying criteria for federal wetlands. However, since the State of California recognizes single criteria wetlands, this area was determined to meet guidelines for State recognized wetland habitat. According to the biological assessment, a total of 0.14 acres of the ephemeral drainage channel where wetland indicators were present will be permanently lost or altered by the proposed development.

The creek would be realigned to allow for the construction of a flat development pad on-site. The creek inlet and outfall from the site would remain the same as existing. The realigned creek channel and naturalized constructed slopes will be approximately 30-feet in width and will contain native vegetation. The channel is proposed to have a natural bottom. The project requires California Department of Fish and Wildlife, Army Corps of Engineers, Regional Water Quality Control Board, and Federal Emergency Management Agency review.

The Atascadero General Plan provides thresholds of significance for impacts to biological resources. The following policies from the Atascadero General Plan Land Use, Open Space, and Conservation (LOC) Element address development of sensitive, natural areas:

1. LOC 6.1: Ensure that development does not degrade scenic and sensitive areas, including historic sites, creeks, riparian corridors, wetlands, woodlands, hillsides and other valuable habitats.
2. LOC Policy 8.1: Ensure that development along Atascadero Creek, Graves Creeks, the Salinas River, blue line creeks, and natural springs, lakes, or other riparian areas does not interrupt natural flows or adversely impact riparian ecosystems and water quality.

The implementation programs associated with these policies call for the preservation of sensitive areas, minimization of land disturbance, and support of floodable terraces. LOC Program area 8.1.3 specifically requires for waterways to be maintained in their natural state and prohibits concrete channelization. Additionally, LOC Program Area 8.2.2 requires a 20-foot setback from any blue-line creek to proposed grading and development. The Regional Quality
Control Board has requested that the City adopt a 30-foot setback to maintain water quality and watershed health. The proposed project includes realignment of the creek to accommodate development of the site. The creek channel will be reconstructed in a natural state with vegetated banks.

The construction of the project may impact trees on the property that are potential nesting and roosting sites for special status species.

BIO Impact-1: Demolition of the existing residence and any planned removal of ornamental trees may result in direct or indirect impacts to nesting birds if construction occurs during the typical avian nesting period (February 01 through August 31), as well as roosting bats. Further, the grassland habitat areas on site, although disturbed, may provide suitable nesting habitat for ground-nesting species. Impacts may occur due to habitat loss or construction related disturbances that may deter roosting or nesting, or cause nests to fail, thus this impact is requires mitigation.

BIO Impact-2: The biological assessment of the site determined that approximately 0.8 acres fall under the jurisdiction of the United States Army Corps of engineers and 0.14 acres of existing ephemeral drainage will be altered to accommodate development of the site. The development of the property will require grading in areas containing State recognized wetland habitat, thus the impact requires mitigation.

BIO Impact-3: The project proposes to realign an existing jurisdictional creek to accommodate development of the project site. The City’s General Plan requires waterways to be maintained in a natural state and that development adhere to a 20-foot setback from the ordinary high water mark, thus, the impact requires mitigation.

MITIGATION / CONCLUSION:

BIO 1-1: Pre Construction Surveys for Roosting Bats: Within 30 days prior to removal of existing structures and/or mature trees, a sunset survey shall be conducted by a qualified biologist to determine if bats are roosting on site. If bats are present, a follow-up acoustic monitoring survey shall be completed to determine, if feasible, which species are present. If roosts of special-status bat species are identified and will be impacted during the proposed project, CDFW will be consulted to determine appropriate measures to be implemented. If it is determined that no special-status bats are present, the project shall proceed under the guidance of a qualified biologist, in a manner that minimizes impacts to individual bats and roosts (e.g., conducting work only during the day or installing one-way exclusions prior to work).

BIO 1-2: Pre Construction Surveys for Nesting Birds: If work is planned to occur between February 1 and September 15, a qualified biologist shall survey the area for nesting birds within one week prior to activity beginning on site. If nesting birds are located on or near the proposed project site, they shall be avoided until they have successfully fledged or the nest is no longer deemed active. A non-disturbance buffer of 50 feet will be placed around non-listed, passerine species, and a 250-foot buffer will be implemented for raptor species. All activity will remain outside of that buffer until a qualified biologist has determined that the young have fledged or that proposed construction activities would not cause adverse impacts to the nest, adults, eggs, or young. If special-status avian species are identified, no work will begin until an appropriate buffer is determined in consultation CDFW, and/or the USFWS.

BIO 2-1: Protection of Hydrologic Resources: Construction within and immediately adjacent to the drainage shall occur only when conditions are dry. For short-term, temporary stabilization,
an erosion and sedimentation control plan shall be developed outlining Best Management Practices (BMPs), which shall be implemented to prevent erosion and sedimentation into the channel during construction. Acceptable stabilization methods include the use of weed-free, natural fiber (i.e., nonmonofilament) fiber rolls, jute or coir netting, and/or other industry standards. BMPs shall be installed and maintained for the duration of the construction period. In addition, the following general measures shall be implemented during construction:

- The limits of disturbance within the existing drainage feature shall be clearly shown on all site plans and flagged within the drainages prior to project implementation. All construction personnel shall be directed to avoid impacts to the areas immediately upstream and downstream of the proposed development including the existing culvert features located at El Camino Real and Viejo Camino.
- All equipment and materials shall be stored out of the streambed at the end of each working day, and secondary containment shall be used to prevent leaks and spills of potential contaminants from entering the stream.
- During construction, washing of concrete, paint, or equipment and refueling and maintenance of equipment shall occur only in designated areas a minimum of 50 feet from all drainages and aquatic features. Sandbags and/or sorbent pads shall be available to prevent water and/or spilled fuel from entering drainages.
- Construction equipment shall be inspected by the operator on a daily basis to ensure that equipment is in good working order and no fuel or lubricant leaks are present.

BIO 2-2: Compensatory Mitigation Plan: A compensatory mitigation plan shall be developed to offset permanent impacts to jurisdictional areas. The exact details and performance criteria of the restoration plan shall be determined during agency coordination with CDFW, RWQCB, and the Corps, as necessary. Stabilization and restoration measures may include the installation of BMPs and/or revegetation using native seed mixes and plantings. Prior to project initiation, all applicable agency permits with jurisdiction over the project area (i.e., Corps, CDFW, and RWQCB) should be obtained. Additional mitigation measures required by these agencies would be implemented as necessary.

BIO 2-3: Agency Permitting: Prior to issuance of any permits for grading or construction on-site, the applicant shall obtain permits from the following agencies, and any other agencies as necessary:

- California Department of Fish and Wildlife
- US Army Corps of Engineers
- Regional Water Quality Control Board

Any mitigation measures required by the above listed permits shall be implemented to their fullest extent.

BIO 3-1: Creek Channel Naturalization: The realigned creek shall be constructed in a manner which maintains and enhances natural flows and vegetation. The creek shall interface with the proposed development in a way which maintains appropriate setbacks and naturalization.

BIO 3-2: Wetland Restoration: Should wetland impacts occur and wetland restoration be required on-site, the wetlands shall be monitored for a period of not less than 5-years. Annual reports from a qualified biologist shall be submitted to the City addressing any irrigation modifications or replanting that may be required to ensure successful naturalization of the restored wetland habitat. A contract with a qualified biologist shall be entered into prior to final of the development permit.
6. **CULTURAL RESOURCES – Will the project:**

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

a) Cause a substantial adverse change in the significance of a historical resource?

b) Cause a substantial adverse change in the significance of an archaeological resource?

c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

d) Disturb any human remains, including those interred outside of formal cemeteries?

EXISTING SETTING:

The City of Atascadero recognizes the impact of various cultures and ecosystems that have shaped it over generations. Therefore, the City, as well as the County and State, make an effort to preserve cultural resources, known or discovered, during the development of new projects.

The existing property is a 4.2 acre, underdeveloped parcel located in the Public zoning district between El Camino Real and Viejo Camino. The surrounding area is composed of residential, commercial, public park, and quasi-public uses such as churches and child care facilities. An existing ephemeral creek (tributary of Paloma Creek) meanders through the project site and flows into the Salinas River approximately ¼ mile to the east. The site contains identified wetlands. There is an existing Historic Colony Home located on the parcel directly adjacent to the project site to the south.

The City of Atascadero’s General Plan Land Use, Open Space, and Conservation Element Programs 6.2.4-6 require the mitigation and noticing of pertinent parties when archaeological discoveries are made in the City. The AMC lists standards to be adhered to should archeological remains be discovered during the development process which include the cessation of all construction activity until proper local, state, and federal protocol is completed. (AMC 9-4.162)

PROPOSED PROJECT:

The applicant is proposing a 56,000+ square foot mini-storage facility with a community space, workshop, and parking lot. The existing creek is proposed to be realigned to accommodate the development. The realigned creek is proposed on the portion of the property adjacent to the Historic Colony Home, creating a buffer between the proposed mini-storage development and the historic residential property.

According to the City’s internal database, the nearest known archeological area is located 1/3 of a mile from the site. The site contains an ephemeral drainage and identified wetlands. The site
has been grazed for a number of years and is subject to annual flooding. A cultural study was prepared by Applied Earthworks, Inc dated August 2020. In accordance with AB52, early notification was send to all tribal communities claiming jurisdiction over the area. Applied Earthworks conducted a records search, document review, tribal outreach, and a field survey. No historic or archeological resources were identified and Applied Earthworks recommended no further action or mitigation under Federal guidelines, however upon further conversation with the consultant, monitoring was determined to be appropriate under CEQA review.

CR Impact-1: The City of Atascadero’s GIS database does not list archaeological sites on or adjacent to the subject property. This does not eliminate the possibility of new resources being discovered. The project site is adjacent to a tributary to Paloma Creek not far from the Salinas River. The applicant’s cultural consultant and tribal consultation concluded that monitoring should occur, thus the impact requires mitigation.

MITIGATION / CONCLUSION: No further mitigation is necessary.

CUL 1-1: Monitoring shall occur during all site disturbance activities by either a member of the designated tribe or a qualified archeologist. Should any resources be unearthed, construction shall immediately stop and further consultation to determine resolution shall be required prior to resuming any construction activities. A contract with a monitor shall be required prior to issuance of any site disturbance permits.

7. GEOLOGY AND SOILS – Will the project:

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Result in the exposure to or production of unstable earth conditions including the following:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Landslides;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Earthquakes;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Liquefaction;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Land subsidence or other similar hazards?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ ☑ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Be within a California Geological Survey “Alquist-Priolo” Earthquake Fault Zone, or other known fault zone?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(consultant Division of Mines and Geology Special Publication #42)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Result in soil erosion, topographic changes, loss of topsoil or unstable soil conditions from proposed improvements such as grading, vegetation removal, excavation or use of fill soil?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Include any structures located on known expansive soils?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXISTING SETTING:
Developing on land with unsuitable soil or geologic conditions can create hazardous environments for people, structures, and infrastructure on and around a site. The environmental review process helps to promote safe building and development practices by ensuring precautions are taken to minimize risk where necessary.

The site spans two parcels and is approximately 4.2 acres of underdeveloped land in the Public zoning district between Viejo Camino and El Camino Real. There is an existing single family residence on one parcel and the other parcel is vacant with 1.8 acres of historic wetlands identified. Due to the low-lying nature of the site, the property is subject to annual seasonal flooding. Approximately 50% of the site is within the FEMA mapped flood zone A with Base Flood Elevations (BFE) determined (Figure 15). This project is subject to and must comply with the Flood damage Prevention Regulations as adopted by the City of Atascadero.

The USDA Natural Resources Conservation Service provides GIS data regarding the site’s stability, and risk of hazards. The biological assessment of the site identified three soil types: 1) still clay loam; 2) Santa Lucia-Lopez Complex; and 3) San Andreas-Arujo Complex. Each of these soil types is associated with their own slope average (Figure 10) The USDA GIS data classifies the site’s soil drainage as “Moderately Drained” with “Moderate” erodibility (Figure 12) and shrink-swell capacity, and slow percolation. Additionally, this data also shows that approximately 3.6 acres of the property are at high risk for liquefaction and another 1.4 acres are at high risk for landslide (Figure 13). The average slope of the combined site is less than 10% according to estimations from the City’s GIS database.

PROPOSED PROJECT:
The applicant is proposing to develop a ministorage facility with more than 56,000 square feet of indoor facilities including storage units, a workshop and community room. The project will be located on two existing parcels southwest of Paloma Creek Park between El Camino Real and Viejo Camino that are covered with moderately expansive soil. The site is composed of two parcels and spans approximately 4.2 acres. There is 1.8 acres of historically identified wetland on the project site; however, the recent drought conditions and grazing activities have affected this resource. The biological assessment prepared for the project in early 2018 identified 0.14 acres of ephemeral drainage on site and no federally recognized triple criteria wetlands. The project proposed to realign the existing creek and modify the existing floodway.

The Atascadero General Plan and Local Hazard Mitigation Plan (LHMP) list and map the potential ground shaking sources that can threaten developments within its boundaries as seen on Table 3. The California Department of Conservation developed the Earthquake Hazard Zone Application which allows users to determine if a parcel is located in an earthquake fault zone. The subject parcel is not within an identified Earthquake Fault Zone.
The Atascadero Municipal Code (AMC) establishes the Geologic Hazard (GH) Overlay Zone for areas with high risk of landslide and liquefaction. The standards for this zone are meant to promote the cautious development of areas prone to geologic hazards including landslide, liquefaction, and seismic hazards. Specifically, projects located in the GH overlay zone must submit a geologic report with the official project application (AMC 9-3.613). AMC 9-4.139 requires a grading plan for a project that involves an excess of 50 cubic yards of earth movement. Furthermore, AMC 9-4.145 requires a sedimentation and erosion control plan for any nonagricultural project where land is disturbed. These plans must be submitted to and reviewed by the City engineer for project approval or modification.

The Atascadero Municipal Code also addresses most issues related to geologic impacts prior to approval of any project. The site is subject to the GH overlay zone standard in AMC 9-3.613. These standards address issues related to landslide, liquefaction, and land subsidence by requiring a geologic report applicable sites. AMC 9-4.139 & 9-4.145 address issues related to soil erosion and topsoil loss by requiring a grading plan and a sedimentation and erosion control plan. AMC and building code regulations would also ensure that the project is consistent with General Plan and LHMP policy regarding geologic and Seismic hazards.

Finally, the General Plan Safety and Noise Element Goal 4 and its respective policies and programs address geologic and seismic hazards as they affect development and emergencies. The Atascadero Local Hazard Mitigation Plan (LHMP) also provides mitigation strategies addressing geologic hazards. Mitigation Goals 4, 5, and 7 promote the enforcement of safe building design, proper environmental studies and documentation, and feasible mitigation strategies for all new developments. Project consistency with these requirements and standards are addressed as part of the building permit process prior to construction.

GEO Impact-1: GIS Data from the United States Geologic Survey characterizes soil on the property as having high risk of landslide and liquefaction with moderate shrink-swell capacity. The site is therefore subject to the GH Overlay zone and associated development standards. The Atascadero Municipal Code requires a geologic report to be submitted prior to permits being approved. The Atascadero Municipal Code requires a sedimentation and erosion control plan to be submitted to the City Engineer for revision and approval review. Since the Atascadero Municipal Code addresses issues geologic hazards, then the impact is insignificant.

GEO Impact-2: The project site contains areas mapped by FEMA as flood zone A with Base Flood elevations determined. The City has adopted Flood damage Prevention Regulations as established by FEMA. The project is subject to compliance with these adopted regulations; therefore, the impact is insignificant.

MITIGATION / CONCLUSION: No further mitigation is required.

8. HAZARDS AND HAZARDOUS MATERIALS – Will the project:

<table>
<thead>
<tr>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?
<table>
<thead>
<tr>
<th>Question</th>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Create a hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

EXISTING SETTING:
The City of Atascadero attempts to regulate land-use in a way that reduces risk for damage during disasters as well exposure to hazardous materials. Where this cannot be achieved, the City has created regulations and standards to protect public health and safety as much as possible.
The existing property is a 4.2 acre, underdeveloped parcel located in the Public zoning district between El Camino Real and Viejo Camino. The surrounding area is composed of residential, commercial, public park, and quasi-public uses such as churches and child care facilities. The site is in an urbanized area and is not adjacent to any wildland areas. The nearby park is an active recreation park with groomed ball fields and irrigated grass areas. The San Luis Obispo County Fire Department categorizes the site as at a high risk for fire (Figure 14), however, this map has not been updated in many years and the surrounding area has been developed with higher intensity residential and commercial uses which reduce the wildland fire risk of the site. The Atascadero Fire Department estimates response time for an emergency on the site would be less than 5 minutes.

The Atascadero General Plan anticipates the full development of the site and the fire department has created an evacuation plan for the community should there be a need to evacuate. The General Plan also addresses the construction of new developments in high fire risk areas by requiring fire resistant material to be used in construction as well as the use of defensible spaces around all structures. Furthermore, AMC requires compliance to fire code standards and review of new projects by the Atascadero Fire Department.

PROPOSED PROJECT: The applicant is proposing mini-storage facilities in excess of 56,000 square feet. The facility would include a community room and associated improvements. The parcels being developed total to 4.2 acres in size.

City and State building regulations provide thresholds of significance for the project. The AMC requires that all new projects be reviewed by the Fire Department for compliance with the California Fire Code or to make modifications where necessary. All new projects are expected to conform to the California Fire Code as well as the local modifications found in AMC 4-7.

HAZ Impact-1: The mini-storage facility is proposed on a site identified as being at high risk for fire hazards. The project will be reviewed by the local fire marshal for compliance with local and state fire codes prior to building permits being issued. Since the Atascadero Municipal code addresses fire hazards before building permits are issued, the impact is insignificant.

MITIGATION / CONCLUSION: No further mitigation is necessary.

9. WATER QUALITY / HYDROLOGY – Will the project:

<table>
<thead>
<tr>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

a) Violate any water quality standards or waste discharge requirements?
<table>
<thead>
<tr>
<th>b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of preexisting nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</th>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>f) Otherwise substantially degrade water quality?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>
EXISTING SETTING:
Alterations to existing landscapes, developed or otherwise, can impact hydrology on the site by increasing run off, risk of flooding, or contaminating ground water. These impacts to the hydrologic cycle can have adverse effects on human health as well as the health of existing ecosystems.

The site currently contains an identified jurisdictional creek and historic wetlands. Drought conditions and grazing activities over the past years have degraded the habitat value of the site but seasonal flooding during average rainfall years occurs over a large portion of the site. Approximately 50% of the site is mapped as floodway and flood zone by FEMA.

The urbanized areas of the Central Coast are divided into ten water management zones (WMZs) based on the receiving water type and common watershed processes. The California Regional Water Quality Control Board (CRWQCB) provides maps showing that the site is located in Water WMZ 1 (CRWQCB, 2013) (Figure 11). The California Department of Water Resources provides a tool to assess the boundaries of significant groundwater basins in California. The subject site is not within any significant groundwater basin. The nearest basin is the Atascadero Subbasin of the Salinas Valley Basin on the eastern side of the City approximately 0.68 miles from the project site.

The Atascadero Storm Water Management Program (SWMP) (Wallace Group, 2009) and the central coast post construction stormwater requirements (CRWQCB, 2013) provide standards to protect water quality and control runoff from new developments. These documents require mitigation or alterations in design for projects that significantly increase the amount of impervious surfaces. Additionally, they address erosion control for new developments. Moreover, The SWMP accounts for all current and future development slated to impact the existing drainage infrastructure.

PROPOSED PROJECT:
The applicant is proposing mini-storage facilities in excess of 56,000 square feet. The facility would include a community room and associated improvements. The parcels being developed total to 4.2 acres in size. There is 1.8 acres of historically identified wetland on the project site; however, the recent drought conditions and grazing activities have affected this resource. The biological assessment prepared for the project in early 2018 identified 0.14 acres of ephemeral drainage on site and no federally recognized triple criteria wetlands. The project proposed to realign the existing creek and modify the existing floodway.

Regulations created by City of Atascadero SWMP, AMC, and the CRWQCB are used as thresholds of significance regulation for issues concerning water quality and hydrology for the proposed project. In addition, CDFW, and ACE have permitting authority over the project due to the proposed realignment of the existing creek and modifications to the mapped floodway.

The City of Atascadero Storm Water Management Plan provides goals and implementation measures for run off control through best practices. Many of these goals are achieved through following state standards for storm water runoff. The central coast post construction stormwater
requirements provide standards to protect water quality and ensure runoff control from new developments (CRWQCB, 2013). The proposed mini-storage facility is subject to post-construction requirements for stormwater rate control and water quality.

Development of the subject property will modify the existing flood zone as delineated on the FEMA Flood Insurance Rate Map (FIRM).

WQH Impact-1: The applicant is proposing to realign an existing jurisdictional drainage and re-contour the site to accommodate the proposed development. Grading includes elimination of the existing creek channel and fill of the existing mapped wetland area, thus *this impact requires mitigation.*

WQH Impact-2: The project is proposing to place fill in the existing FEMA mapped flood zone A, which has the potential to increase flooding on adjacent properties; therefore, the *impact requires mitigation.*

MITIGATION / CONCLUSION:

WQH 1-1: The applicant shall obtain all necessary permits form the Regional Water Quality Control Board.

WQH 2-1: Prior to issuance of any building permits, a FEMA Conditional Letter of Map Revision (CLOMR) must be issued and received by the City Engineer.

WQH 2-2: The project design and construction shall comply with the CLOMR. Prior to a final inspection or Occupancy release, the developer must apply for and be issued a FEMA Letter of Map Revision (LOMR) and a copy filed in the Office of the City Engineer.

10. LAND USE & PLANNING – Will the project:

<table>
<thead>
<tr>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Physically divide an established community?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project adopted for the purpose of avoiding or mitigating an environmental effect?

<table>
<thead>
<tr>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project adopted for the purpose of avoiding or mitigating an environmental effect?</td>
<td>☐</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) Conflict with any applicable habitat conservation plan or natural community conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

EXISTING SETTING:
The City of Atascadero regulates land uses in an attempt to create a sensible, safe, and healthy landscape for the residents of the City. Policies regarding land use planning and conservation can be found in the Atascadero General Plan and associated documents. The City’s General plan calls for a 20-foot setback from all jurisdictional creeks and watercourses. The RWQCB has requested a more stringent setback of 30-feet.
According to the Atascadero General Plan Land Use, Open Space and Conservation Element, the Public zoning district is designated for public and quasi-public land uses such as churches, child care facilities, schools, parks, membership organizations, etc. Mini-Storage is listed as a conditionally allowed use, requiring certain findings to be made to determine compatibility with the site environment and surrounding neighborhood character. The surrounding parcels include multi-family and single-family residential developments, commercial uses, parks, and quasi-public uses.

The mini-storage is proposed on a 4.2-acre site in the Public zoning district of Atascadero. There is an existing ephemeral creek running through the project site. The property has historically flooded during the rainy season and wetlands have been identified in the past. The current drought and grazing practices has diminished wetland characteristics.

PROPOSED PROJECT:
The applicant is proposing mini-storage facilities in excess of 56,000 square feet. The facility would include a community space and associated improvements. The parcels being developed total to 4.2 acres in size. There is 1.8 acres of historically identified wetland on the project site; however, the recent drought conditions and grazing activities have affected this resource. The biological assessment prepared for the project in early 2018 identified 0.14 acres of ephemeral drainage on site and no federally recognized triple criteria wetlands. The project proposed to realign the existing creek and modify the existing floodway.

LUP Impact-1: The project proposes to realign an existing jurisdictional creek to accommodate development of the project site. The City’s General Plan requires waterways to be maintained in a natural state and that development adhere to a 20-foot setback from the ordinary high water mark, thus, the impact requires mitigation.

MITIGATION/CONCLUSION:

LUP 1: See BIO-3-1

11. MINERAL RESOURCES – Will the project:

<table>
<thead>
<tr>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?

b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?

EXISTING SETTING:
Mineral resources are protected in the state of California for their economic benefits.

PROPOSED PROJECT:
The project site is a historic low point and subject to annual flooding. There have historically been mapped wetlands on the site. The applicant is proposing an 56,000+ square foot mini-
storage facility with a community use space and associated site improvements. There are no known mineral resources in the area of the proposed project.

MITIGATION / CONCLUSION: No impacts are expected to occur.

12. NOISE – Will the project result in:

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

EXISTING SETTING:
The City of Atascadero regulates noise pollution from any given development because of the potential for adverse effects on human health and safety.

The existing property is a 4.2 acre, underdeveloped site located in the Public zoning district between El Camino Real and Viejo Camino. The surrounding area is composed of residential, commercial, public park, and quasi-public uses such as churches and child care facilities. The site is in an urbanized area. The nearby park is an active recreation park.

The Atascadero Municipal code provides the threshold of significance for noise created during the construction process of new developments. The AMC states that all noises created by construction activities are exempt from City regulation as long as the activities occur between
seven AM and nine PM. During the hours of nine PM to seven AM the maximum allowable decibel range for all noise created is sixty-five decibels.

PROPOSED PROJECT:
The applicant is proposing mini-storage facilities in excess of 56,000 square feet. The facility would include a caretaker’s residence and associated improvements. The parcels being developed total to 4.2 acres in size. Large grading equipment will be needed to complete site development. Fill dirt will be brought to the site during grading construction activities. Impacts related to construction will be temporary. The continued operation of a mini-storage facility is not expected to generate high volumes of noise.

NOI Impact-1: The ministorage facility will create a temporary source of noise pollution during the construction process. The Atascadero Municipal Code exempts construction activities from the city’s noise regulations during the hours of 7am and 9pm, and limits noise to a maximum of sixty-five decibels during the hours of nine PM and seven AM. Since the Atascadero Municipal code address noise concerns, the *impact is insignificant.*

MITIGATION / CONCLUSION: No further mitigation is necessary.

13. POPULATION & HOUSING – Will the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

EXISTING SETTING:
The State of California aims to ensure adequate housing and quality living environments by requiring cities to take detailed accounts of current housing stock and needs as well as projections of expected future needs. The Atascadero General Plan Housing Element identifies housing related goals for the city and methods by which to achieve them.

The General Plan Housing Element and existing data from the 2000 and 2010 United States Censuses provide a snapshot of population growth in the City of Atascadero. The City’s population grew by about 14.1 percent in the 1990s. From 2000 to 2010 City population grew by only 7.2% percent. Housing needs are reported by the San Luis Obispo County Council of Governments (SLOCOG). SLOCOG provides the Regional Housing Needs Allocation (RHNA) for incorporated areas of San Luis Obispo County. Allotments are further categorized into affordability types. Each city is then responsible for dedating the needed resources and amending their General Plan Housing Element to attain their allotment of housing.
The existing property is a 4.2 acre, underdeveloped site located in the Public zoning district between El Camino Real and Viejo Camino. The project site is currently comprised of 2 parcels, one is vacant and the other contains a non-conforming single-family dwelling. The surrounding area is composed of residential, commercial, public park, and quasi-public uses such as churches and child care facilities. The site is in an urbanized area. The nearby park is an active recreation park. According to the Atascadero General Plan Land Use, Open Space and Conservation Element, the Public zoning district is designated for public and quasi-public land uses such as churches, child care facilities, schools, parks, membership organizations, etc.

PROPOSED PROJECT:
The proposed project consists of a 56,000+ square foot mini-storage facility with community room and associated improvements. The existing non-conforming residence will be demolished to accommodate the proposed development.

PH Impact-1: The proposed project will eliminate one single-family residence and replace the underdeveloped land with a mini-storage facility and community room. The property is zoned “Public” which anticipates non-residential land-uses; *The impact of the project on population and housing is insignificant.*

MITIGATION / CONCLUSION: No further mitigation is necessary.

14. PUBLIC SERVICE:
Will the proposed project have an effect upon, or result in the need for new or altered public services in any of the following areas:

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Emergency Services (Atascadero Fire)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Police Services (Atascadero Police)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Public Schools?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Parks?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Other public facilities?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING SETTING:
New developments in the City of Atascadero place increased demand on local public service. For this reason, the city must ensure that existing services and future service and facility expansions can accommodate expected new developments.

The existing property is a 4.2 acre, underdeveloped site located in the Public zoning district between El Camino Real and Viejo Camino. The project site is currently comprised of 2 parcels, one is vacant and the other contains a non-conforming single-family dwelling. The surrounding area is composed of residential, commercial, public park, and quasi-public uses such as churches and child care facilities. The site is in an urbanized area. The nearby park is an active recreation park. According to the Atascadero General Plan Land Use, Open Space and
Conservation Element, the Public zoning district is designated for public and quasi-public land uses such as churches, child care facilities, schools, parks, membership organizations, etc.

PROPOSED PROJECT:
The proposed project consists of a 56,000+ square foot mini-storage facility with caretaker’s residence and associated improvements. The existing non-conforming residence will be demolished to accommodate the proposed development.

The project will increase the intensity of uses on the subject parcel; however, this increase is anticipated in the General Plan. The project is commercial in nature and will not place a burden on existing City services or facilities.

MITIGATION / CONCLUSION: No impacts are expected to occur.

15. RECREATION:

<table>
<thead>
<tr>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

- a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

- b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

EXISTING SETTING:
The City of Atascadero attempts to provide quality open spaces and recreation areas for its residents as it continues to grow.

The Atascadero General Plan recognizes the importance of access to parks and recreation areas. The General Plan Land Use, Conservation and Open Space Element Program areas 11.1.3-5 promote this access and aim for a ratio of five acres of open space for every one thousand residents. Associated development impact fees are used to fund maintenance of existing parks and potential acquisition of new open spaces to make these goals achievable.

The existing property is a 4.2 acre, underdeveloped site located in the Public zoning district between El Camino Real and Viejo Camino. The project site is currently comprised of 2 parcels, one is vacant and the other contains a non-conforming single-family dwelling. The surrounding area is composed of residential, commercial, public park, and quasi-public uses such as churches and child care facilities. The site is in an urbanized area. The nearby park is an active recreation park. According to the Atascadero General Plan Land Use, Open Space and Conservation Element, the Public zoning district is designated for public and quasi-public land uses such as churches, child care facilities, schools, parks, membership organizations, etc.

PROPOSED PROJECT:
The proposed project consists of an 56,000+ square foot mini-storage facility with community room and associated improvements. The existing non-conforming residence will be demolished to accommodate the proposed development. The use is commercial in nature and will not increase demands on existing recreation facilities.

MITIGATION / CONCLUSION: No impacts are expected to occur.

16. TRANSPORTATION / TRAFFIC – Will the project:

| a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit? |
|---|---|---|---|
| Potentially Significant | Impact Requires Mitigation | Insignificant Impact | Not Applicable |
| ☐ | ☒ | ☒ | ☐ |

| b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways? |
|---|---|---|---|
| Potentially Significant | Impact Requires Mitigation | Insignificant Impact | Not Applicable |
| ☒ | ☐ | ☒ | ☐ |

| c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks? |
|---|---|---|---|
| Potentially Significant | Impact Requires Mitigation | Insignificant Impact | Not Applicable |
| ☒ | ☐ | ☐ | ☒ |

| d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? |
|---|---|---|---|
| Potentially Significant | Impact Requires Mitigation | Insignificant Impact | Not Applicable |
| ☒ | ☐ | ☐ | ☒ |

| e) Result in inadequate emergency access? |
|---|---|---|---|
| Potentially Significant | Impact Requires Mitigation | Insignificant Impact | Not Applicable |
| ☐ | ☐ | ☒ | ☐ |

| f) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities? |
|---|---|---|---|
| Potentially Significant | Impact Requires Mitigation | Insignificant Impact | Not Applicable |
| ☐ | ☒ | ☒ | ☐ |

EXISTING SETTING:
The City of Atascadero strives to provide a quality transportation network that is feasible and practical for the needs of the City.
The Atascadero General Plan Circulation Element sets policies aimed at encouraging the use of different transportation modalities and ensuring network efficiency. Regional highways and county roads fall under the jurisdiction of CalTrans and the County of San Luis Obispo. SLOCOG provides standards and regulations for countywide transportation networks.

The City of Atascadero General Plan Circulation Element provides the threshold of significance for transportation and traffic. The City has designated level C as the minimum level of service required of all City facilities. The Circulation Element accounts for expected future land uses as projected by the Land Use, Conservation and Open Space Element. Additionally, the City of Atascadero requires impact fees to be paid towards public services that include the local circulation system.

The existing property is a 4.2 acre, underdeveloped site located in the Public zoning district between El Camino Real and Viejo Camino. The project site is currently comprised of 2 parcels, one is vacant and the other contains a non-conforming single-family dwelling. The surrounding area is composed of residential, commercial, public park, and quasi-public uses such as churches and child care facilities. The site is in an urbanized area. According to the Atascadero General Plan Land Use, Open Space and Conservation Element, the Public zoning district is designated for public and quasi-public land uses such as churches, child care facilities, schools, parks, membership organizations, etc.

PROPOSED PROJECT:
The proposed project consists of a 56,000+ square foot mini-storage facility with a community room and associated improvements. The existing non-conforming residence will be demolished to accommodate the proposed development. The mini-storage is expected to generate 77 trips a day and the community meeting room is anticipated to generate approximately 53 daily trips when in use with potential additional peak trips depending on use, according to the 10th Edition of the Institute of Transportation Engineers’ Trip Generation Manual.

The project includes improvements to Viejo Camino that include a new sidewalk and bus stop. This will increase opportunities for multi-modal travel throughout the City and provide a safe path for pedestrians to travel in the area.

As proposed, with the improvements to Viejo Camino, the project is not expected to create significant issues or conflicts with current traffic patterns or programs laid out by the City or SLOCOG.

TRT Impact-1: The proposed mini-storage facility and community space will incrementally increase demand on the Atascadero transportation network by generating new trips and contributing to infrastructure usage. The City requires impact fees from new developments that cover impacts to the circulation system. Since the City addresses concerns regarding transportation and traffic before development, then the impact is insignificant.

MITIGATION / CONCLUSION: No further mitigation is necessary.

17. UTILITIES AND SERVICE SYSTEMS – Will the project:
a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board? ☒ ☐ ☐ ☐ ☐

b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects? ☐ ☐ ☒ ☐ ☐

c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects? ☐ ☐ ☒ ☐ ☐

d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed? ☐ ☐ ☒ ☐ ☐

e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it does not have adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments? ☐ ☐ ☒ ☐ ☐

f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs? ☐ ☐ ☒ ☐ ☐

g) Comply with federal, state, and local statutes and regulations related to solid waste? ☐ ☐ ☒ ☐ ☐

EXISTING SETTING:
The City of Atascadero must account for all impacts to infrastructure and utilities to ensure that existing infrastructure is able to handle current and future demands. Sewer connection and usage fees go toward any necessary improvements or upgrades to the City’s wastewater treatment plant. The AMC sets standards for addressing drainage as well as waste and wastewater disposal from all developments in the City.

The existing property is a 4.2 acre, underdeveloped site located in the Public zoning district between El Camino Real and Viejo Camino. The project site is currently comprised of 2 parcels, one is vacant and the other contains a non-conforming single-family dwelling. The surrounding area is composed of residential, commercial, public park, and quasi-public uses such as churches and child care facilities. According to the Atascadero General Plan Land Use, Open
Space and Conservation Element, the Public zoning district is designated for public and quasi-
public land uses such as churches, child care facilities, schools, parks, membership
organizations, etc. City sewer is available for the project site. There is an existing single-family
residence on-site that is currently served by an on-site wastewater system.

The site currently contains an ephemeral creek that qualifies as a jurisdictional watercourse.
Water flows onto the site from an existing culvert under El Camino Real and meanders east to a
culvert under Viejo Camino where the creek joins with Paloma creek and flows into the Salinas
River located approximately ¼ mile from the project site. Historically the site was designated
with 1.8 acres of wetland. Recent drought conditions and consistent annual livestock grazing
have decreased the wetland vegetation and habitat of the site.

The Atascadero Mutual Water Company (AMWC) provides water to the City. The company’s
service area is shown in Figure 16; the site is within the service area. The AMWC’s Urban
Water Management Plan provides regulations based on SLOCOG population projections and
historic water use for their service areas. Their projections for water supply and demand,
assuming normal conditions through 2040, can be seen in Table 4. These projections go
beyond the time period of the most recent General Plan in which the City anticipates build out
by the year 2025. Their projections show that they will have sufficient water supplies to meet the
demand.

Waste Management, Inc. (WM) is the city’s contracted waste management service. Approximately 99% of Atascadero’s solid waste is taken to the Chicago Grade Landfill in Templeton, California (Wallace Group, 2012). CalRecycle monitors and collects data on all permitted landfills in the state of California. According to CalRecycle the Chicago Grade Landfill had a remaining capacity of 6,022,396 cubic yards as of November of 2017 with an operations estimated to cease by 2039.

PROPOSED PROJECT:
The proposed project consists of a 56,000+ square foot mini-storage facility with community
room and associated improvements. The existing non-conforming residence will be demolished
to accommodate the proposed development. The project includes the realignment of a natural
ephemeral creek and reconstruction of 0.77 acres of wetland habitat area. Water is proposed to
enter the site from the existing culverts under El Camino Real and be directed to the culvert at
Viejo Camino. The re-aligned water flow path will include vegetation, which is expected to
provide filtration and enhance water quality.

Construction of new drainage infrastructure is expected to conform to City policies and AMC
requirements. Construction efforts on the property are expected to abide by waste collection
standards stated in the AMC.

A new mini-storage and community room is not expected to impose demands above anticipated
projections on the AMWC water resources or the landfill capacity at Chicago Grade Landfill, nor
will impacts exceed the capacity of the City’s wastewater treatment plant.

USS Impact-1: The facility will be connected to City sewer. The City’s wastewater treatment
plant is nearing capacity, however, upgrades and new infrastructure is slated to begin over the
next few years. The General Plan anticipates development of this parcel and the existing
treatment plan is able to accommodate the small loads generated by the proposed use, thus the
impact is insignificant.
USS Impact-2: The project has the potential to add a new under-road culvert to the drainage under Viejo Camino if determined necessary to accommodate site and historic water flows. The drainage originates from a jurisdictional ephemeral creek and wetland area upstream. The installation of a new culvert will impact the post-construction hydrology of the site. The City requires all projects to provide an analysis of post-construction hydrology to ensure that no increase in flows or flooding will occur downstream, thus the impact is insignificant.

USS Impact-3: The facility may create new demand on existing water resources provided by the Atascadero Mutual Water Company. The Atascadero Mutual Water Company is projected to be able to meet water needs for all new uses expected within the City through the year 2040. Since adequate water resources are available, the impact is insignificant.

MITIGATION / CONCLUSION: No further mitigation is needed.

18. TRIBAL CULTURAL RESOURCES – Will the project:

<table>
<thead>
<tr>
<th>Potentially Significant</th>
<th>Impact Requires Mitigation</th>
<th>Insignificant Impact</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

a) Cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape, sacred place, or object with cultural value to a California Native American tribe?: ☐ ☐ ☒ ☐

b) Impact a listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as define in Public Resources Code Section 5020.1(k)? ☐ ☐ ☐ ☒

c) Impact a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California native American Tribe? ☐ ☐ ☐ ☒

EXISTING SETTING:
San Luis Obispo County and the surrounding region is an ancestral home to various Native American tribes. This leads to the occasional discovery of tribal artifacts during development. Local and State regulation recognize the importance of coordinating with local tribes and archeological services to preserve these resources.

The City of Atascadero’s General Plan Land Use, Open Space, and Conservation Element Programs 6.2.4-6 require the mitigation and noticing of pertinent parties when archaeological discoveries are made in the city. The AMC lists standards to be adhered to should archeological
remains be discovered during the development process which include the cessation of all construction activity until proper local, state, and federal protocol is completed. (AMC 9-4.162) Finally, The California Environmental Quality Act requires the lead agency to notify regional tribes about projects that trigger environmental review. After notifying the regional tribes, they are allowed to require further studies to be administered during any project if they believe that there is potential for cultural artifacts to be found.

The existing property is a 4.2 acre, underdeveloped site located in the Public zoning district between El Camino Real and Viejo Camino. The project site is currently comprised of 2 parcels, one is vacant and the other contains a non-conforming single-family dwelling. The surrounding area is composed of residential, commercial, public park, and quasi-public uses such as churches and child care facilities. The site currently contains an ephemeral creek that qualifies as a jurisdictional watercourse. Water flows onto the site from an existing culvert under El Camino Real and meanders east to a culvert under Viejo Camino where the creek joins with Paloma creek and flows into the Salinas River located approximately ¼ mile from the project site. Historically the site was designated with 1.8 acres of wetland. Recent drought conditions and consistent annual livestock grazing have decreased the wetland vegetation and habitat of the site.

A known historic cemetery for the rural community of Dove was located approximately 600-feet from the proposed development. The Dove community was in existence the latter portion of the nineteenth century. No other remnants are known to exist within the vicinity. A cultural study was prepared by Applied Earthworks, Inc. dated August 2020 and concluded that no tribal resources were identified on-site. While the report concluded that no monitoring was required based on Federal standards, the consultant determined that monitoring would be appropriate under CEQA.

PROPOSED PROJECT:
The proposed project consists of a 56,000+ square foot mini-storage facility with community room and associated improvements. The existing non-conforming residence will be demolished to accommodate the proposed development. The project includes the realignment of a natural ephemeral creek.

Consultation in accordance with AB52 were completed and it was determined that no further study was necessary and that monitoring should occur consistent with the consultant recommendations.

MITIGATION / CONCLUSION:

TRC 1-1: See CUL 1-1

19. WILDFIRE – If located in or near a state responsibility areas or lands classified as very high fire severity zones, would the project:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

a) Substantially impair an adopted emergency response plan or emergency evacuation plan?
EXISTING SETTING: The proposed project is located between El Camino Real and Viejo Camino within a developed area of the City. The site is located in the high fire severity zone with minimal surrounding wildland interface.

PROPOSED PROJECT: The proposed project includes the construction of a 56,000+ square-foot mini-storage facility and accessory workshop and comment meeting rooms. The project includes perimeter landscaping and the relocation and restoration of an ephemeral creek.

MITIGATION / CONCLUSION: No further mitigation is needed.

20. MANDATORY FINDINGS OF SIGNIFICANCE:

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

b) Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to, pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?

| ☐ | ☐ | ☐ | ☒ |

c) Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?

| ☐ | ☐ | ☒ | ☒ |

d) Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?

| ☐ | ☐ | ☒ | ☒ |
EXISTING SETTING:
The existing property is a 4.2 acre, underdeveloped site located in the Public zoning district between El Camino Real and Viejo Camino. The project site is currently comprised of 2 parcels, one is vacant and the other contains a non-conforming single-family dwelling. The surrounding area is composed of residential, commercial, public park, and quasi-public uses such as churches and child care facilities.

PROPOSED PROJECT:
The proposed project consists of a 56,000+ square foot mini-storage facility with community room and associated improvements. The existing non-conforming residence will be demolished to accommodate the proposed development. The project includes the realignment of a natural ephemeral creek.

MFS Impact-1: Since the project is expected to comply with policies, regulations and mitigations provided by the City, then **there is no significant impact.**

MITIGATION / CONCLUSION: No further mitigation is necessary.

For further information on California Environmental Quality Act (CEQA) or the City’s environmental review process, please visit the City’s website at www.atascadero.org under the Community Development Department or the California Environmental Resources Evaluation System at: http://resources.ca.gov/ceqa/ for additional information on CEQA.
Exhibit A – Initial Study References & Outside Agency Contacts

The Community Development Department of the City of Atascadero has contacted various agencies for their comments on the proposed project. With respect to the proposed project, the following outside agencies have been contacted (marked with an ☒) with a notice of intent to adopt a proposed negative / mitigated negative declaration.

☒ Atascadero Mutual Water Company
☒ Atascadero Unified School District
☒ Atascadero Waste Alternatives
☒ AB 52 – Salinan Tribe
☒ AB 52 – Northern Chumash Tribe
☒ AB 52 – Xolon Salinan Tribe
☐ AB 52 – Other
☐ California Highway Patrol
☒ California Department of Fish and Wildlife (Region 4)
☒ California Department of Transportation (District 5)
☒ Pacific Gas & Electric
☐ San Luis Obispo County Planning & Building
☐ San Luis Obispo County Environmental Health Department
☐ Upper Saliens – Las Tablas RCD
☐ Central Coast Information Center (CA, Historical Resources Information System)
☐ CA Department of Food & Agriculture
☐ CA Department of Conservation
☐ CA Air Resources Board
☐ Address Management Service
☒ Native American Heritage Commission
☒ San Luis Obispo Council of Governments
☒ San Luis Obispo Air Pollution Control District
☒ San Luis Obispo Integrated Waste Management Board
☒ Regional Water Quality Control Board District 3
☒ HEAL SLO – Healthy Communities Workgroup
☒ US Postal Service
☒ Pacific Gas & Electric (PG&E)
☒ Southern California Gas Co. (SoCal Gas)
☐ San Luis Obispo County Assessor
☐ LAFCO
☐ Office of Historic Preservation
☐ Charter Communications
☐ CA Housing & Community Development
☐ CA Department of Toxic Substances Control
☒ US Army Corp of Engineers
☒ Federal Emergency Management Agency (FEMA)
☐ Other:
☐ Other:
The following checked (“☒”) reference materials have been used in the environmental review for the proposed project and are hereby incorporated by reference into the Initial Study. The following information is available at the Community Development Department and requested copies of information may be viewed by requesting an appointment with the project planner at (805) 461-5000.

Project File / Application / Exhibits / Studies	Adopted Atascadero Capital Facilities Fee Ordinance
Atascadero General Plan 2025 / Final EIR	Atascadero Inclusionary Housing Policy
Atascadero Appearance Review Manual	Regional Transportation Plan
Atascadero Urban Stormwater Management Plan	Flood Hazard Maps
Atascadero Hillside Grading Guidelines	CDFW / USFW Mapping
Atascadero Native Tree Ordinance & Guidelines	CA Natural Species Diversity Data Base
Atascadero Climate Action Plan (CAP)	Archeological Resources Map
Atascadero Downtown Revitalization Plan	Atascadero Mutual Water Company Urban Water Management Plan
Atascadero Bicycle Transportation Plan	CalEnvironScreen
Atascadero GIS mapping layers	Department of Conservation Fault Zone Application
SLO APCD CEQA Air Quality Handbook	Other _______________
EXHIBIT B – MITIGATION SUMMARY TABLE
Dove Creek Mini-Storage
DEV18-0103

Per Public Resources Code § 21081.6, the following measures also constitutes the mitigation monitoring and/or reporting program that will reduce potentially significant impacts to less than significant levels. The measures will become conditions of approval (COAs) should the project be approved. The City of Atascadero, as the Lead Agency, or other responsible agencies, as specified, are responsible to verify compliance with these COAs.

<table>
<thead>
<tr>
<th>MITIGATION MEASURE</th>
<th>TIMING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesthetics</td>
<td></td>
</tr>
<tr>
<td>AES-1.1 All exterior lights shall be turned off between the hours of 11pm and 6am. Lights may turn on when motion is sensed. All lighting must be dimmable to maintain the low light levels of the surrounding residential and open space areas.</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Air Quality</td>
<td></td>
</tr>
<tr>
<td>AQ 2-1 Use of water trucks or sprinkler systems, in sufficient quantities to prevent airborne dust from leaving the site and from exceeding the APCD’s limit of 20% opacity for greater than 3 minutes in any 60-minute period. Increased watering frequency would be required whenever wind speeds exceed 15 mph. Reclaimed (non-potable) water should be used whenever possible. Please note that during drought conditions, water use may be a concern and the contractor or builder shall consider the use of an APCD-approved dust suppressant where feasible to reduce the amount of water used for dust control.</td>
<td>During construction</td>
</tr>
<tr>
<td>AQ 2-2 All dirt stock pile areas should be sprayed daily as needed.</td>
<td>During construction</td>
</tr>
<tr>
<td>AQ 2-3 Permanent dust control measures identified in the approved project revegetation and landscape plans should be implemented as soon as possible following completion of any soil disturbing activities. Exposed ground areas that are planned to be reworked at dates greater than one month after initial grading should be sown with a fast germinating, non-invasive grass seed and watered until vegetation is established.</td>
<td>Prior to permit issuance</td>
</tr>
<tr>
<td>AQ 2-4 All disturbed soil areas not subject to revegetation should be stabilized using approved chemical soil binders, jute netting, or other methods approved in advance by the APCD.</td>
<td>During construction</td>
</tr>
<tr>
<td>AQ 2-5 All roadways, driveways, sidewalks, etc. to be paved should be completed as soon as possible. In addition, building pads should be laid as soon as possible after grading unless seeding or soil binders are used.</td>
<td>During construction</td>
</tr>
</tbody>
</table>
MITIGATION MEASURE

AQ 2-6	Vehicle speed for all construction vehicles shall not exceed 15 mph on any unpaved surface at the construction site. All trucks hauling dirt, sand, soil, or other loose materials are to be covered or should maintain at least two feet of freeboard (minimum vertical distance between top of load and top of trailer) in accordance with CVC Section 23114.	During construction
AQ 2-7	“Track-Out” is defined as sand or soil that adheres to and/or agglomerates on the exterior surfaces of motor vehicles and/or equipment (including tires) that may then fall onto any highway or street as described in California Vehicle Code Section 23113 and California Water Code 13304. To prevent Track Out, designate access points and require all employees, subcontractors, and others to use them. Install and operate a "track-out prevention device" where vehicles enter and exit unpaved roads onto paved streets. The track-out prevention device can be any device or combination of devices that are effective at preventing track out, located at the point of intersection of an unpaved area and a paved road. Rumble strips or steel plate devices require periodic cleaning to be effective. If paved roadways accumulate tracked out soils, the track-out prevention device may need to be modified.	During construction
AQ 2-8	Sweep streets at the end of each day if visible soil material is carried onto adjacent paved roads. Water sweepers with reclaimed water should be used where feasible.	During construction
AQ 2-9	All of these fugitive dust mitigation measures shall be shown on grading and building plans. The contractor or builder shall designate a person or persons to monitor the fugitive dust emissions and enhance the implementation of the measures as necessary to minimize dust complaints, reduce visible emissions below 20% opacity, and to prevent transport of dust offsite. Their duties shall include holidays and weekend periods when work may not be in progress. The name and telephone number of such persons shall be provided to the APCD.	Prior to permit issuance

Biological Resources

| BIO 1-1 | **Pre Construction Surveys for Roosting Bats:** Within 30 days prior to removal of existing structures and/or mature trees, a sunset survey shall be conducted by a qualified biologist to determine if bats are roosting on site. If bats are present, a follow-up acoustic monitoring survey shall be completed to determine, if feasible, which species are present. If roosts of special-status bat species are identified and will be impacted during the proposed project, CDFW will | Prior to permit issuance |
be consulted to determine appropriate measures to be implemented. If it is determined that no special-status bats are present, the project shall proceed under the guidance of a qualified biologist, in a manner that minimizes impacts to individual bats and roosts (e.g., conducting work only during the day or installing one-way exclusions prior to work).

Pre Construction Surveys for Nesting Birds: If work is planned to occur between February 1 and September 15, a qualified biologist shall survey the area for nesting birds within one week prior to activity beginning on site. If nesting birds are located on or near the proposed project site, they shall be avoided until they have successfully fledged or the nest is no longer deemed active. A non-disturbance buffer of 50 feet will be placed around non-listed, passerine species, and a 250-foot buffer will be implemented for raptor species. All activity will remain outside of that buffer until a qualified biologist has determined that the young have fledged or that proposed construction activities would not cause adverse impacts to the nest, adults, eggs, or young. If special-status avian species are identified, no work will begin until an appropriate buffer is determined in consultation CDFW, and/or the USFWS.

Protection of Hydrologic Resources: Construction within and immediately adjacent to the drainage shall occur only when conditions are dry. For short-term, temporary stabilization, an erosion and sedimentation control plan shall be developed outlining Best Management Practices (BMPs), which shall be implemented to prevent erosion and sedimentation into the channel during construction. Acceptable stabilization methods include the use of weed-free, natural fiber (i.e., nonmonofilament) fiber rolls, jute or coir netting, and/or other industry standards. BMPs shall be installed and maintained for the duration of the construction period. In addition, the following general measures shall be implemented during construction:

- The limits of disturbance within the existing drainage feature shall be clearly shown on all sites plans and flagged within the drainages prior to project implementation. All construction personnel shall be directed to avoid impacts to the areas immediately upstream and downstream of the proposed development including the existing culvert features located at El Camino Real and Viejo Camino.
- All equipment and materials shall be stored out of the streambed at the end of each working day, and secondary containment shall be used to prevent leaks and spills of potential contaminants from entering the stream.
MITIGATION MEASURE

<table>
<thead>
<tr>
<th>TIMING</th>
</tr>
</thead>
<tbody>
<tr>
<td>• During construction, washing of concrete, paint, or equipment and refueling and maintenance of equipment shall occur only in designated areas a minimum of 50 feet from all drainages and aquatic features. Sandbags and/or sorbent pads shall be available to prevent water and/or spilled fuel from entering drainages.</td>
</tr>
<tr>
<td>• Construction equipment shall be inspected by the operator on a daily basis to ensure that equipment is in good working order and no fuel or lubricant leaks are present.</td>
</tr>
</tbody>
</table>

BIO 2-2 **Compensatory Mitigation Plan:** A compensatory mitigation plan shall be developed to offset permanent impacts to jurisdictional areas. The exact details and performance criteria of the restoration plan shall be determined during agency coordination with CDFW, RWQCB, and the Corps, as necessary. Stabilization and restoration measures may include the installation of BMPs and/or revegetation using native seed mixes and plantings. Prior to project initiation, all applicable agency permits with jurisdiction over the project area (i.e., Corps, CDFW, and RWQCB) should be obtained. Additional mitigation measures required by these agencies would be implemented as necessary.

BIO 2-3 **Agency Permitting:** Prior to issuance of any permits for grading or construction on-site, the applicant shall obtain permits from the following agencies, and any other agencies as necessary:

- California Department of Fish and Wildlife
- US Army Corps of Engineers
- Regional Water Quality Control Board

Any mitigation measures required by the above listed permits shall be implemented to their fullest extent.

BIO 3-1 **Creek Channel Naturalization:** The realigned creek shall be constructed in a manner which maintains and enhances natural flows and vegetation. The creek shall interface with the proposed development in a way which maintains appropriate setbacks and naturalization.

BIO 3-2 **Wetland Restoration:** Should wetland impacts occur and wetland restoration be required on-site, the wetlands shall be monitored for a period of not less than 5-years. Annual reports from a qualified biologist shall be submitted to the City addressing any irrigation modifications or replanting that may be required to ensure successful naturalization of the restored wetland habitat. A contract with a qualified biologist...
MITIGATION MEASURE

shall be entered into prior to final of the development permit.

| TIMING |
|-----------------|-----------------|
| Contract prior to permit issuance, monitoring during construction |

Cultural Resources

| CUL 1-1 | Monitoring shall occur during all site disturbance activities by either a member of the designated tribe or a qualified archeologist. Should any resources be unearthed, construction shall immediately stop and further consultation to determine resolution shall be required prior to resuming any construction activities. A contract with a monitor shall be required prior to issuance of any site disturbance permits. |

Water Quality and Hydrology

WQH 1-1	The applicant shall obtain all necessary permits from the Regional Water Quality Control Board.
WQH 2-1	Prior to issuance of any building permits, a FEMA Conditional Letter Of Map Revision (CLOMR) must be issued and received by the City Engineer.
WQH 2-2	The project design and construction shall comply with the CLOMR. Prior to a final inspection or Occupancy release, the developer must apply for and be issued a FEMA Letter Of Map Revision (LOMR) and a copy filed in the Office of the City Engineer.
LUP 1-1	See BIO 3-1
TRC 1-1	See CUL 1-1

The applicant agrees to incorporate the above measures into the project. These measures become a part of the project description and therefore become a part of the record of action upon which the environmental determination is based. All development activity must occur in strict compliance with the above mitigation measures. The measures shall be perpetual and run with the land. These measures are binding on all successors in interest of the subject property.

The applicant understands that any changes made to the project description subsequent to this environmental determination must be reviewed by the Community Development Director or their designee and may require a new environmental analysis for the project. By signing this agreement, the owner(s) agrees to and accepts the incorporation of the above mitigation measures into the proposed project description.

Signature of Owner(s) __________________________ Name (Print) __________________________ Date 3-11-21
Figure 1 – Location Map / General Plan & Zoning
Figure 5 – Landscape Plan
Figure 6 – Farmland Monitoring
Figure 7 – 1,000 Foot Buffer and Surrounding Land Uses
Figure 8 – USFWS Wetland Mapper
Figure 10 – Soils and Slopes
Figure 11 – Flood Zones, Hydrology, & Water Management Zones

[Map showing flood zones and hydrology zones with a marked 'Subject Site']
Figure 12 – Soil Erodibility
Figure 13 – Liquefaction and Landslide Risk
Figure 14 – Fire Hazard
Figure 15 – FEMA Floodway

Subject Parcel

Floodway

Flood zone AE – area subject to flooding
Figure 16 – Atascadero Mutual Water Company Service Area
Figure 17 – Atascadero Community Wide Emissions by Sector

- Transportation 43%
- Residential 29%
- Commercial / Industrial 14%
- Waste 6%
- Wastewater 2%
- Off-Road 6%
Table 1 – San Luis Obispo Air Pollution Attainment Status

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Standards****</th>
<th>Federal Standards****</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concentration</td>
<td>Attainment Status</td>
</tr>
<tr>
<td>Ozone (O<sub>3</sub>)</td>
<td>1 Hour</td>
<td>0.09 ppm (180 µg/m<sup>3</sup>)</td>
<td>Non-Attainment</td>
</tr>
<tr>
<td></td>
<td>8 Hour</td>
<td>0.070 ppm (137 µg/m<sup>3</sup>)</td>
<td>Non-Attainment</td>
</tr>
<tr>
<td>Respirable Particulate Matter (PM<sub>10</sub>)</td>
<td>24 Hour</td>
<td>50 µg/m<sup>3</sup></td>
<td>Non-Attainment</td>
</tr>
<tr>
<td></td>
<td>Annual Arithmetic Mean</td>
<td>20 µg/m<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td>Fine Particulate Matter (PM<sub>2.5</sub>)</td>
<td>24 Hour</td>
<td>No State Standard</td>
<td>Non-Attainment</td>
</tr>
<tr>
<td></td>
<td>Annual Arithmetic Mean</td>
<td>12 µg/m<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>8 Hour</td>
<td>9.0 ppm (10 mg/m<sup>3</sup>)</td>
<td>Attainment</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>20 ppm (23 mg/m<sup>3</sup>)</td>
<td></td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO<sub>x</sub>)</td>
<td>Annual Arithmetic Mean</td>
<td>0.030 ppm (67 µg/m<sup>3</sup>)</td>
<td>Attainment</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>0.18 ppm (330 µg/m<sup>3</sup>)</td>
<td></td>
</tr>
<tr>
<td>Sulfur Dioxide (SO<sub>x</sub>)</td>
<td>24 Hour</td>
<td>0.04 ppm (105 µg/m<sup>3</sup>)</td>
<td>Attainment</td>
</tr>
<tr>
<td></td>
<td>3 Hour</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>0.25 ppm (665 µg/m<sup>3</sup>)</td>
<td>Attainment</td>
</tr>
<tr>
<td></td>
<td>30 Day Average</td>
<td>1.5 µg/m<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calendar Quarter</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rolling 3-Month Average*</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Lead*</td>
<td></td>
<td>0.00 ppm (26 µg/m<sup>3</sup>)</td>
<td>No Attainment Information</td>
</tr>
<tr>
<td>Visibility Reducing Particles</td>
<td>8 Hour</td>
<td>Extinction coefficient of 0.23 per kilometer – visibility of ten miles or more (0.07-0.26 miles or more for Lake Tahoe) due to particles when relative humidity is less than 70 percent. Motor vehicle Attenuation and Transmission through Filter Tape</td>
<td>Attainment</td>
</tr>
<tr>
<td>Sulfates</td>
<td>24 Hour</td>
<td>25 µg/m<sup>3</sup></td>
<td>Attainment</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>1 Hour</td>
<td>0.03 ppm (42 µg/m<sup>3</sup>)</td>
<td>Attainment</td>
</tr>
<tr>
<td>Vinyl Chloride*</td>
<td>24 Hour</td>
<td>0.01 ppm (26 µg/m<sup>3</sup>)</td>
<td>No Attainment Information</td>
</tr>
</tbody>
</table>

**** Unclassified (EPA/Federal definition): Any area that cannot be classified on the basis of available information as meeting or not meeting the national primary or Secondary ambient air quality standard for that pollutant.

*** San Luis Obispo County has been designated non-attainment east of the -120° 4 deg Longitude line, in areas of SLO County that are south of 35.45 degrees, and east of the 110.3 degree Longitude line, in areas of SLO County that are north of 35.45 degrees. Map of non-attainment area is available upon request from the APCD.*

** Secondary Standard (EPA/Federal definition): Any area that meets the national primary or secondary ambient air quality standard for that pollutant. (CA definition): State standard was exceeded at least once during a three year period.

**** Federal PM2.5 Secondary Standard is 15 µg/m³.

***** The 2008 NAAQS for Sulfates is 6 ppb. The 2015 NAAQS for Sulfate is 0.70 ppb. The attainment status shown in this table relies on the 2008 NAAQS. SLO County has not been officially designated for the 2015 NAAQS.

Table 2 – APCD Thresholds of Significance

Construction Operations Thresholds

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Threshold(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily</td>
</tr>
<tr>
<td>ROG + NOₓ (combined)</td>
<td>137 lbs</td>
</tr>
<tr>
<td>Diesel Particulate Matter (DPM)</td>
<td>7 lbs</td>
</tr>
<tr>
<td>Fugitive Particulate Matter (PM₁₀), Dust(2)</td>
<td>2.5 tons</td>
</tr>
<tr>
<td>Greenhouse Gases (CO₂, CH₄, N₂O, HFC, CFC, F₆₆)</td>
<td>Amortized and Combined with Operational Emissions (See Below)</td>
</tr>
</tbody>
</table>

1. Daily and quarterly emission thresholds are based on the California Health & Safety Code and the CARB Carl Moyer Guidelines.
2. Any project with a grading area greater than 4.0 acres of worked area can exceed the 2.5 ton PM₁₀ quarterly threshold.

Screening Criteria for Project Air Quality Analysis

<table>
<thead>
<tr>
<th>INDUSTRIAL</th>
<th>1.000 SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Heavy Industry</td>
<td>159</td>
</tr>
<tr>
<td>General Light Industry</td>
<td>92</td>
</tr>
<tr>
<td>Industrial Park</td>
<td>81</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>123</td>
</tr>
<tr>
<td>Mini Storage</td>
<td>267</td>
</tr>
<tr>
<td>Refrigerated Warehouse-No Rail</td>
<td>176</td>
</tr>
<tr>
<td>Refrigerated Warehouse-Rail</td>
<td>176</td>
</tr>
<tr>
<td>Unrefrigerated Warehouse-No Rail</td>
<td>245</td>
</tr>
<tr>
<td>Unrefrigerated Warehouse-Rail</td>
<td>245</td>
</tr>
<tr>
<td>Fault</td>
<td>Distance* (miles)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Rinconada and Jolon</td>
<td>2</td>
</tr>
<tr>
<td>Black Mountain</td>
<td>3</td>
</tr>
<tr>
<td>La Panza</td>
<td>9</td>
</tr>
<tr>
<td>Los Osos</td>
<td>14</td>
</tr>
<tr>
<td>Hosgri</td>
<td>22</td>
</tr>
<tr>
<td>San Andreas</td>
<td>27</td>
</tr>
<tr>
<td>San Simeon</td>
<td>35</td>
</tr>
</tbody>
</table>

*from El Camino Real/Traffic Way
Table 4 – Atascadero Mutual Water Company Supply/Demand Projection

<table>
<thead>
<tr>
<th>Population Served</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29,870</td>
<td>32,372</td>
<td>33,521</td>
<td>34,711</td>
<td>35,943</td>
<td>37,219</td>
</tr>
</tbody>
</table>

NOTES: 2015 population are based on DWR population tool and future population projections are based on AMWC Demand Study.
January 28, 2019

Mr. Scott Newton
Arroyo Grande, California
Sent via email: scott@sole2soulsports.com

RE: Biological Resources Assessment Memorandum for the Dove Creek Self-storage Development Project, 11505 El Camino Real and 11450 Viejo Camino, Atascadero, California (APN 045-342-009 and 045-342-010)

Dear Mr. Newton,

Terra Verde Environmental Consulting, LLC (Terra Verde) completed a biological resources assessment of the property located at 11505 El Camino Real and 11450 Viejo Camino (APN 045-342-009 and 045-342-010) in the City of Atascadero, San Luis Obispo County, California (see Attachment A – Figure 1: Site Location and Overview Map). The biological assessment was completed in support of a permit application for a proposed development project which includes the construction of approximately 71,000 square feet of new buildings, including self-storage units and a business operations office building with attached, two-story residential dwelling. An existing, single-family residence located on the western edge of the property will be demolished as part of the proposed project. Current development plans also include realignment of an ephemeral drainage that currently flows northeast across the site, in order to convey storm water flows around the proposed development. Approximately 0.77 acre of the total 4.15-acre lot has been designated as a wetland open space preservation area that will be planted with a mix of native species appropriate for the site. This area will receive storm water run-off from the development and any storm water overflow from the re-aligned drainage feature, and will also serve as mitigation for proposed impacts to the existing drainage.

The purpose of the biological resources assessment completed by Terra Verde is to identify sensitive biological resources that occur, or have potential to occur, within the proposed project site. A sensitive resource is defined here as one that is of management concern to local, county, state, and/or federal resource agencies. The existing site conditions, survey methods, and results of the assessment are described in detail below, as well as recommended avoidance and minimization measures, which are intended to reduce potential impacts to sensitive biological resources to the extent feasible. As necessary, this report may be used to support the environmental review and regulatory agency permitting process.
Existing Conditions

The project site is located within the Atascadero U.S. Geological Survey (USGS) 7.5-minute topographic quadrangle, on the eastern edge of the Santa Lucia Mountain Range. It is situated within the Upper Salinas Watershed and the Upper Salinas River Valley, approximately 0.85 mile west of the Salinas River. Topography at the site is flat to gently sloping with elevations ranging from approximately 271 to 280 meters (890 to 920 feet). An unnamed USGS blue line drainage feature flows northeast across the site. The project site is largely undeveloped, with one single-family residence located along the western edge of the project site, which is accessed from Viejo Camino. A review of historical aerial imagery indicates that mowing or other vegetation management activities have been occurring intermittently at this site since at least 2007 (Google Earth, 1989-2017). Further, a herd of goats has been grazed on the property for the past several years.

Methodology

Prior to conducting field surveys of the subject property, Terra Verde staff reviewed the following resources:

- Aerial photographs (Google Earth, 1994-2017) and preliminary site plans
- USGS Atascadero 7.5-minute topographic quadrangle map
- Online Soil Survey of San Luis Obispo County, California, (Natural Resources Conservation Service [NRCS, 2018])
- Consortium of California Herbaria (CCH) online database of plant collections (CCH, 2018)
- California Department of Fish and Wildlife (CDFW) CNDDB list of state and federally listed special-status species documented within the Atascadero 7.5-minute quadrangle and the surrounding eight quadrangles (Templeton, Creston, Santa Margarita, Lopez Mountain, San Luis Obispo, Morro Bay South, Morro Bay North and York Mountain) (CDFW, 2018)
- CNDDB map of special-status species that have been documented within a 2-mile radius of the project site (CDFW, 2018) (see Attachment A – Figure 2: 2-mile CNDDB and Critical Habitat Map)
- California Native Plant Society (CNPS) Inventory of Rare and Endangered Plants for the Atascadero 7.5-minute quadrangle and the surrounding eight quadrangles (CNPS, 2018)
- U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) map (USFWS, 2018a)
- USFWS Critical Habitat Portal (USFWS, 2018b)

A list of regionally-occurring, special-status species was compiled based on records reported in the scientific database queries. This species list was utilized to focus the field survey efforts as well as to determine appropriate survey periods for special-status botanical species that have the potential to occur on site. Following the literature review and desktop analysis, Terra Verde completed field surveys of the site, which focused on the identification of sensitive habitats and special-status species, as well as a jurisdictional determination and formal wetland delineation.
of hydrologic features. Surveys were completed on May 17 and July 10, 2018, and included the entire approximately four-acre parcel, a 100-foot buffer on all sides where access was feasible, and a visual scan of the surrounding landscape.

During each survey, all detected plant and wildlife species and their sign (e.g., tracks, scat, vocalizations, etc.) were documented (see Attachment B – Wildlife and Botanical Species Observed). Botanical species identifications and taxonomic nomenclature followed *The Jepson Manual: Vascular Plants of California*, 2nd edition (Baldwin et al., 2012), as well as taxonomic updates provided in the Jepson eFlora (Jepson Flora Project, 2018). The second edition of *A Manual of California Vegetation* (MCV; Sawyer et al., 2009) was referenced for vegetation community classification; however, no natural vegetation communities occur on site.

The habitat requirements for each regionally-occurring, special-status species were analyzed and compared to the type and quality of habitats observed on site during the field surveys. The potential for many species to occur within the project site was eliminated due to a lack of suitable habitat, elevation, appropriate soils/substrate, and/or known distribution of the species within the project site. Special-status species for which suitable habitat was identified on site are discussed below.

Results

Hydrologic Resources

As noted previously, an ephemeral, USGS blue line drainage flows northeast across the survey area. This drainage enters the subject property via a culvert located under El Camino Real, conveying storm flows and surface runoff from the adjacent areas. The drainage exits the subject property via a second culvert located under Viejo Camino at the northeastern corner of the property, and converges with Paloma Creek approximately 0.25 mile east of the project site. Paloma Creek flows directly into the Salinas River and eventually to the traditionally navigable waters of the Pacific Ocean. No flowing or standing water was present at the time of the surveys. However, a clearly-defined channel and evidence of an ordinary high water mark (OHWM) were observed within the ephemeral drainage. Based on the results of the jurisdictional determination completed by Terra Verde, it is assumed that this drainage would be considered waters of the state under the jurisdiction of the California Department of Fish and Wildlife (CDFW) and the Regional Water Quality Control Board (RWQCB), and waters of the U.S. under the jurisdiction of the U.S. Army Corps of Engineers (Corps).

In addition, a historical wetland feature mapped in the USFWS NWI online database covers approximately 1.80 acres of the proposed project site (USFWS, 2018a). This area is classified as a freshwater emergent wetland, dominated by persistent emergent vegetation, with temporary flooding during the growing season (USFWS, 2018a). As such, a formal wetland delineation was completed to document the current extent of federal and/or state wetlands on the site, the results of which are summarized in a separate report (*Waters and Wetlands Delineation Report*,
Dove Creek Self-Storage Development Project; Terra Verde, 2019). Although the channel bottom supports a dominance of wetland-indicator (i.e., hydrophytic) plant species throughout much of its length, no hydric soils were observed on site. Therefore, no federal wetlands (i.e., three-parameter wetlands defined by presence of hydric soils, wetland hydrology, and dominance of hydrophytic vegetation) were documented within the survey area.

It is important to note that, though generally accurate, the spatial data housed in the NWI is acquired through analysis of high-altitude imagery and therefore, may not accurately reflect current conditions on the ground (USFWS, 2018a). Although historical site conditions may have supported federal wetlands, current conditions do not support a sufficient hydroperiod to create or sustain hydric soils. Thus, the freshwater emergent wetland feature previously mapped within the proposed project site may have transitioned to more xeric conditions as a result of current and past land uses, as well as changes in the local climate and site hydrology.

Vegetation Communities
Vegetation communities and land cover types were assessed and classified based on vegetation composition, structure, and density, with consideration of known land management practices. The survey area consists primarily of ruderal, herbaceous vegetation that is periodically mowed and regularly grazed by goats. A single-family residence, with associated driveway and ornamental landscaping, occupy approximately 0.30 acre of the project site and survey area (see Attachment C – Representative Site Photographs).

A total of 44 vascular plant species were identified within the survey area, of which 33 (75 percent) are non-native and 20 (45 percent) are listed on the California Invasive Plant Council’s (Cal-IPC) Invasive Plant Inventory (Cal-IPC, 2018), with native species observed only at very low cover. The number and abundance of non-native taxa substantially exceeds that of native taxa, and many of the native species documented are known to be disturbance tolerant (e.g., western ragweed [Ambrosia psilostachya], common fiddleneck [Amsinckia intermedia], common lippia [Phyla nodiflora], etc.), reflecting the high level of disturbance and extremely ruderal nature of vegetation on site.

None of the land cover types observed on site correspond to a natural vegetation community as defined in the MCV classification system. The land cover types observed on site are briefly described below, and illustrated in Figure 3 (Vegetation Communities Map) in Attachment A.

Ruderal Herbaceous (3.85 acres)
A vast majority of the site is characterized by ruderal herbaceous vegetation dominated by wall barley (Hordeum murinum), Mediterranean barley (Hordeum marinum subsp. gussoneanum), and heart-podded hoary cress (Lepidium draba), with dense patches of yellow star-thistle (Centaurea solstitialis). The channel bottom of the ephemeral, blue line drainage supports a distinct assemblage of species dominated by common lippia, with Mediterranean barley present at high cover in occasional patches. The composition of
ruderal herbaceous vegetation observed is typical of grazed, agricultural, and urban sites and may provide limited foraging habitat for birds, small mammals, and other wildlife.

Developed/Ornamental (0.30 acre)

This land cover type is associated with the existing residence and associated driveway. Ornamental trees, including pine (*Pinus* sp.), Mexican fan palm (*Washingtonia robusta*), and coast redwood (*Sequoia sempervirens*) border the home. Anthropogenic/Developed areas observed on site may provide suitable habitat for nesting birds, roosting bats, and limited wildlife foraging and cover.

Special-status Botanical Species

Based on a review of the range and habitat requirements for regionally-occurring special-status species, it was determined that seven special-status botanical species have the potential to occur within the proposed development area. Surveys were timed to occur during the typical blooming and/or fruiting period for these species, which are listed below with special-status rankings:

- Cambria morning-glory (*Calystegia subacaulis* subsp. *episcopalis*), California Rare Plant Rank (CRPR) 4.2
- San Luis Obispo owl’s-clover (*Castilleja densiflora* subsp. *obispoensis*), CRPR 1B.2
- Congdon’s tarplant (*Centromadia parryi* subsp. *congdonii*), CRPR 1B.1
- Paniculate tarplant (*Deinandra paniculata*), CRPR 4.2
- San Joaquin spearscale (*Extriplex joaquinana*), CRPR 1B.2
- Spreading navarretia (*Navarretia fossalis*), federal threatened / CRPR 1B.1
- Shining navarretia (*Navarretia nigelliformis* subsp. *radians*), CRPR 1B.2

Although low suitability habitat is present for these species on the project site, none were identified during appropriately-timed surveys and, as such, none are expected to occur within the proposed development area.

Special-status Wildlife Species

Based on a review of the range and habitat requirements for regionally-occurring species, it was determined that four special-status wildlife species have the potential to occur within the proposed development area. These wildlife species and their special-status rankings include:

- Grasshopper sparrow (*Ammodomus savannarum*), California Species of Special Concern (CSC)
- Pallid bat (*Antrozous pallidus*), CSC
- Townsend’s big-eared bat (*Corynorhinus townsendii*), CSC
- Big free-tailed bat (*Nyctinomops macrotis*), CSC

In addition to these special-status wildlife species, suitable habitat for resident and migratory nesting birds is present on site. Although no nesting birds or roosting bats were detected during
the field surveys, they may utilize the site for nesting purposes on an annual basis and be present prior to the start of construction.

Impact Assessment and Recommended Avoidance and Minimization Measures

The following section includes a summary of potential impacts to sensitive resources as a result of the proposed development. Recommended avoidance and minimization measures (AMMs) are provided, which are intended to reduce or mitigate expected impacts to sensitive biological resources including the existing blue line drainage feature.

Hydrologic Resources

Current development plans include the re-alignment and partial channelization of the blue line drainage through a box culvert, in order to direct and slow storm water flows around the proposed development and reduce flood potential on the site. In addition, sections of the re-aligned channel will be lined with concrete and/or riprap. This will result in the permanent loss of approximately 0.14 acre of ephemeral drainage channel. The proposed wetland open space area included as part of the proposed development will offset the permanent losses. In addition, the following protection measures should be implemented to protect aquatic resources on site during and following construction.

AMM 1: Protection of Hydrologic Resources

Construction within and immediately adjacent to the drainage shall occur only when conditions are dry. For short-term, temporary stabilization, an erosion and sedimentation control plan shall be developed outlining Best Management Practices (BMPs), which shall be implemented to prevent erosion and sedimentation into the channel during construction. Acceptable stabilization methods include the use of weed-free, natural fiber (i.e., non-monofilament) fiber rolls, jute or coir netting, and/or other industry standards. BMPs shall be installed and maintained for the duration of the construction period. In addition, the following general measures shall be implemented during construction:

- The limits of disturbance within the existing drainage feature shall be clearly shown on all sites plans and flagged within the drainages prior to project implementation. All construction personnel shall be directed to avoid impacts to the areas immediately upstream and downstream of the proposed development including the existing culvert features located at El Camino Real and Viejo Camino.
- All equipment and materials shall be stored out of the streambed at the end of each working day, and secondary containment shall be used to prevent leaks and spills of potential contaminants from entering the stream.
- During construction, washing of concrete, paint, or equipment and refueling and maintenance of equipment shall occur only in designated areas a minimum of 50 feet from all drainages and aquatic features. Sandbags and/or sorbent pads shall be available to prevent water and/or spilled fuel from entering drainages.
• Construction equipment shall be inspected by the operator on a daily basis to ensure that equipment is in good working order and no fuel or lubricant leaks are present.

AMM 2: Compensatory Mitigation Plan
A compensatory mitigation plan shall be developed to offset permanent impacts to jurisdictional areas. The exact details and performance criteria of the restoration plan shall be determined during agency coordination with CDFW, RWQCB, and the Corps, as necessary. Stabilization and restoration measures may include the installation of BMPs and/or revegetation using native seed mixes and plantings. Prior to project initiation, all applicable agency permits with jurisdiction over the project area (i.e., Corps, CDFW, and RWQCB) should be obtained. Additional mitigation measures required by these agencies would be implemented as necessary.

Special-status Botanical Species
No special-status botanical species were documented on site during appropriately-timed spring and summer surveys. As such, it is assumed that no special-status botanical species currently exist on site, and no impacts to special-status plant populations will occur as a result of the proposed development.

Special-status Wildlife Species
Demolition of the existing residence and any planned removal of ornamental trees may result in direct or indirect impacts to nesting birds if construction occurs during the typical avian nesting period (generally February 01 through August 31), as well as roosting bats. Further, the grassland habitat areas on site, although disturbed, may provide suitable nesting habitat for ground-nesting species. Impacts may occur due to habitat loss (e.g., removal of trees) or construction-related disturbances that may deter roosting or nesting, or cause nests to fail. Increased short- and long-term anthropogenic activity including increased light pollution may also result in nest failures or deterring nesting and roosting behavior.

AMM 3: Pre-construction Surveys for Roosting Bats
Within 30 days prior to removal of existing structures and/or mature trees, a sunset survey shall be conducted by a qualified biologist to determine if bats are roosting on site. If bats are present, a follow-up acoustic monitoring survey shall be completed to determine, if feasible, which species are present. If roosts of special-status bat species are identified and will be impacted during the proposed project, CDFW will be consulted to determine appropriate measures to be implemented. If it is determined that no special-status bats are present, the project shall proceed under the guidance of a qualified biologist, in a manner that minimizes impacts to individual bats and roosts (e.g., conducting work only during the day or installing one-way exclusions prior to work).

AMM 4: Pre-construction Surveys for Nesting Birds
If work is planned to occur between February 1 and September 15, a qualified biologist shall survey the area for nesting birds within one week prior to activity beginning on site. If
nesting birds are located on or near the proposed project site, they shall be avoided until they have successfully fledged or the nest is no longer deemed active. A non-disturbance buffer of 50 feet will be placed around non-listed, passerine species, and a 250-foot buffer will be implemented for raptor species. All activity will remain outside of that buffer until a qualified biologist has determined that the young have fledged or that proposed construction activities would not cause adverse impacts to the nest, adults, eggs, or young. If special-status avian species are identified, no work will begin until an appropriate buffer is determined in consultation CDFW, and/or the USFWS.

Conclusion

No special-status species were observed during field surveys. Although low suitability habitat is present on site for seven regionally-occurring special-status species, none were observed during appropriately-timed surveys in May and July. As such, none are expected to occur. In addition, it was determined that four special-status wildlife species, as well as nesting birds, may utilize existing structures and trees/grassland at the site. Further, proposed impacts to an ephemeral blue line drainage will result in the permanent loss of jurisdictional areas and associated habitat. An approximately 0.77-acre wetland and open space preservation area has been incorporated into the site development plans, which will offset these permanent losses.

Based on the current proposed preliminary designs, it is expected that implementation of the recommended mitigation measures will avoid and/or minimize impacts to potentially occurring sensitive biological resources to a less than significant level. If you should have any questions or require additional information, please contact me at knelson@terraverdeweb.com or (702) 596-5038.

Sincerely,

Kristen Nelson
Botanist

Attachments:
A – Figures
 Figure 1: Site Location and Overview Map
 Figure 2: 2-mile CNDDB and Critical Habitat Map
 Figure 3: Vegetation Communities Map
B – Wildlife and Botanical Species Observed
C – Representative Site Photographs
References

This page intentionally left blank.
ATTACHMENT A – Figures

Figure 1: Site Location and Overview Map
Figure 2: 2-mile CNDDDB and Critical Habitat Map
Figure 3: Vegetation Communities Map
This page intentionally left blank.
Dove Creek Self-storage Development Project
Figure 1: Site Location and Overview Map
Dove Creek Self-storage Development Project
Figure 2: 2-mile CNDDDB and Critical Habitat Map

- Project Location
- 2-mile Buffer
- Special-status Wildlife Occurrence
- Special-status Plant Occurrence
- Steelhead Critical Habitat

Dove Creek Self-storage Development Project

Figure 3: Vegetation Communities Map

Survey Area

Developed/Ornamental

Ruderal Herbaceous

Unnamed Blue Line Drainage

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community
This page intentionally left blank.
ATTACHMENT B – Wildlife and Botanical Species Observed

Table A.1. List of Botanical Species

<table>
<thead>
<tr>
<th>Family</th>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Indicator Status ¹</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apiaceae, Carrot Family</td>
<td>Conium maculatum</td>
<td>Poison hemlock</td>
<td>FACW</td>
<td>Naturalized</td>
</tr>
<tr>
<td>Areceae, Palm Family</td>
<td>Washingtonia robusta</td>
<td>Mexican fan palm</td>
<td>FACW</td>
<td>Naturalized (Ornamental)</td>
</tr>
<tr>
<td>Asteraceae, Sunflower Family</td>
<td>Ambrosia psilostachya</td>
<td>Western ragweed</td>
<td>--</td>
<td>Native</td>
</tr>
<tr>
<td></td>
<td>Anthemis cotula</td>
<td>Mayweed</td>
<td>--</td>
<td>Naturalized</td>
</tr>
<tr>
<td></td>
<td>Capsella bursa-pastoris</td>
<td>Shepherd’s purse</td>
<td>--</td>
<td>Naturalized</td>
</tr>
<tr>
<td></td>
<td>Carduus pycnocephalus subsp. pycnocephalus</td>
<td>Italian thistle</td>
<td>--</td>
<td>Naturalized</td>
</tr>
<tr>
<td></td>
<td>Centaurea solstitialis</td>
<td>Yellow star-thistle</td>
<td>--</td>
<td>Naturalized</td>
</tr>
<tr>
<td></td>
<td>Erigeron bonariensis</td>
<td>Flax-leaved horseweed</td>
<td>--</td>
<td>Naturalized</td>
</tr>
<tr>
<td></td>
<td>Silybum marianum</td>
<td>Milk thistle</td>
<td>--</td>
<td>Naturalized</td>
</tr>
<tr>
<td></td>
<td>Sonchus asper subsp. asper</td>
<td>Prickly sow thistle</td>
<td>FAC</td>
<td>Naturalized</td>
</tr>
<tr>
<td>Boraginaceae, Borage Family</td>
<td>Amsinckia intermedia</td>
<td>Common fiddleneck</td>
<td>--</td>
<td>Native</td>
</tr>
<tr>
<td></td>
<td>Amsinckia menziesii</td>
<td>Small-flowered fiddleneck</td>
<td>--</td>
<td>Native</td>
</tr>
<tr>
<td></td>
<td>Plagiobothrys canescens</td>
<td>Valley popcornflower</td>
<td>--</td>
<td>Native</td>
</tr>
<tr>
<td>Brassicaceae,</td>
<td>Brassica nigra</td>
<td>Black mustard</td>
<td>--</td>
<td>Naturalized</td>
</tr>
</tbody>
</table>

Table A.2. List of Wildlife Species

<table>
<thead>
<tr>
<th>Order</th>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Origin/Listing Status*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avifauna</td>
<td>Cathartes aura</td>
<td>Turkey vulture</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Corvus brachyrhynchos</td>
<td>American crow</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Haemorhous mexicanus</td>
<td>House finch</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Melozone crissalis</td>
<td>California towhee</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Passer domesticus</td>
<td>House sparrow</td>
<td>Non-native</td>
</tr>
<tr>
<td></td>
<td>Sayornis saya</td>
<td>Say’s phoebe</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Spinus psaltria</td>
<td>Lesser goldfinch</td>
<td>--</td>
</tr>
<tr>
<td>Mammals</td>
<td>Thomomys bottae</td>
<td>Botta’s pocket gopher</td>
<td>--</td>
</tr>
<tr>
<td>Reptiles</td>
<td>Sceloporus occidentalis</td>
<td>Coast range fence lizard</td>
<td>--</td>
</tr>
<tr>
<td>Family</td>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Indicator Status</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Mustard Family</td>
<td>Capsella bursa-pastoris</td>
<td>Shepherd’s purse</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Hirschfeldia incana</td>
<td>Mediterranean hoary mustard</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Lepidium draba</td>
<td>Heart-podded hoary cress</td>
<td>--</td>
</tr>
<tr>
<td>Convolvulaceae, Morning-glory Family</td>
<td>Convolvulus arvensis</td>
<td>Bindweed</td>
<td>--</td>
</tr>
<tr>
<td>Cupressaceae, Cypress Family</td>
<td>Sequoia sempervirens</td>
<td>Coast redwood</td>
<td>--</td>
</tr>
<tr>
<td>Fabaceae, Legume Family</td>
<td>Acmispon americanus var. americanus</td>
<td>American bird’s foot trefoil</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Lotus corniculatus</td>
<td>Bird’s-foot trefoil</td>
<td>FAC</td>
</tr>
<tr>
<td></td>
<td>Medicago polymorpha</td>
<td>California burclover</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Vicia villosa</td>
<td>Hairy vetch</td>
<td>--</td>
</tr>
<tr>
<td>Geraniaceae, Geranium Family</td>
<td>Erodium botrys</td>
<td>Big heron bill</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Erodium cicutarium</td>
<td>Redstem filaree</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Erodium moschatum</td>
<td>Greenstem filaree</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Geranium molle</td>
<td>Crane’s bill geranium</td>
<td>--</td>
</tr>
<tr>
<td>Juncaceae, Rush Family</td>
<td>Juncus cf patens</td>
<td>Spreading rush</td>
<td>FACW</td>
</tr>
<tr>
<td>Lamiaceae, Mint Family</td>
<td>Marrubium vulgare</td>
<td>White horehound</td>
<td>--</td>
</tr>
<tr>
<td>Myrsinaceae, Myrsine Family</td>
<td>Lysimachia arvensis</td>
<td>Scarlet pimpernel</td>
<td>FAC</td>
</tr>
<tr>
<td>Papaveraceae, Poppy Family</td>
<td>Eschscholzia californica</td>
<td>California poppy</td>
<td>--</td>
</tr>
<tr>
<td>Poaceae, Grass Family</td>
<td>Avena barbata</td>
<td>Slender wild oat</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Bromus catharticus</td>
<td>Rescue Grass</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Bromus diandrus</td>
<td>Ripgut grass</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Bromus hordeaceus</td>
<td>Soft chess</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Bromus madritensis subsp. rubens</td>
<td>Red brome</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Cynodon dactylon</td>
<td>Bermuda grass</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Elymus triticoides</td>
<td>Beardless wild rye</td>
<td>FAC</td>
</tr>
</tbody>
</table>
Table A.1. List of Botanical Species

<table>
<thead>
<tr>
<th>Family</th>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Indicator Status 1</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Festuca perennis</td>
<td>Rye grass</td>
<td>FAC</td>
<td>Naturalized</td>
</tr>
<tr>
<td></td>
<td>Hordeum marinum</td>
<td>Mediterranean barley</td>
<td>FAC</td>
<td>Naturalized</td>
</tr>
<tr>
<td></td>
<td>subsp. gussoneanum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hordeum murinum</td>
<td>Wall barley</td>
<td>--</td>
<td>Naturalized</td>
</tr>
<tr>
<td></td>
<td>Pennisetum clandestinum</td>
<td>Kikuyu grass</td>
<td>--</td>
<td>Naturalized</td>
</tr>
<tr>
<td>Polygonaceae, Buckwheat Family</td>
<td>Rumex crispus</td>
<td>Curly dock</td>
<td>FAC</td>
<td>Naturalized</td>
</tr>
<tr>
<td>Rubiaceae, Madder Family</td>
<td>Galium aparine</td>
<td>Goose grass</td>
<td>--</td>
<td>Native</td>
</tr>
<tr>
<td>Rubiaceae, Madder Family</td>
<td>Galium aparine</td>
<td>Goose grass</td>
<td>--</td>
<td>Native</td>
</tr>
<tr>
<td>Salicaceae, Willow Family</td>
<td>Salix laevigata</td>
<td>Red willow</td>
<td>FACW</td>
<td>Native</td>
</tr>
<tr>
<td>Verbenaceae, Vervain Family</td>
<td>Phyla nodiflora</td>
<td>Common lippia</td>
<td>FACW</td>
<td>Native</td>
</tr>
</tbody>
</table>

1Listing Status: Indicates listing status for taxa that are included on the National Wetland Plant List (NWPL) for the Arid West region (USFWS, 2016), as well as taxa that are considered noxious/invasive weeds in California. No special-status species were documented. Taxa that are considered wetland-indicators are included on the NWPL and assigned one of the following wetland indicator statuses:

- **Obligate (OBL)**: plants that almost always occur in wetlands.
- **Facultative Wetland (FACW)**: plants that usually occur in wetlands, but may occur in non-wetlands.
- **Facultative (FAC)**: plants that are equally likely to occur in wetlands and non-wetlands.

2cf (=conforms to): indicates provisional species determination based on the observed pheno-phase, but in the absence of diagnostic features (e.g., desiccated or undeveloped reproductive structures).
This page intentionally left blank.
ATTACHMENT C - Representative Site Photographs
This page intentionally left blank.
Photo 1. View west showing the narrow channel of the blue line drainage (May 17, 2018).

Photo 2. View north toward private residence and landscape trees present on western site boundary (May 10, 2017).
Photo 3. View west of the culvert under Viejo Camino, with a debris rack just downstream of the culvert outlet (May 17, 2018).

Photo 4. View east of the downstream end of the drainage where it flows under Viejo Camino (May 17, 2018).
This page intentionally left blank
Waters and Wetlands Delineation Report
Dove Creek Self-Storage Development Project
Atascadero, San Luis Obispo County, California

Prepared for:
Mr. Scott Newton
Arroyo Grande, California

Prepared by:
Terra Verde Environmental Consulting, LLC
3765 South Higuera Street, Suite 102
San Luis Obispo, California 93401

March 2019
This page intentionally left blank.
DISCLAIMER

Terra Verde Environmental Consulting, LLC (hereafter, Terra Verde) has prepared this waters and wetlands delineation report for use by Mr. Scott Newton (owner). The results and conclusions of this report are conditional upon final approval by the United States Army Corps of Engineers. Results and conclusions presented in this report are based upon information available in the public domain (e.g., United States Geological Survey 7.5-minute topographic quadrangle maps, the Natural Resources Conservation Service Soil Surveys, aerial photographs from various sources, etc.), as well as Terra Verde’s on-site reconnaissance, data collection, and analyses, which were completed using standard methods. Results and conclusions presented herein represent the best professional judgment of Terra Verde technical staff. In this context, surveying/boundary locations developed by Terra Verde are assumed to be true and correct.

Brian Dugas
Principal Biologist
Terra Verde Environmental Consulting, LLC
March 05, 2019
Date

Kristen Nelson
Botanist
Terra Verde Environmental Consulting, LLC
March 05, 2019
Date
EXECUTIVE SUMMARY

Terra Verde Environmental Consulting, LLC (Terra Verde) was retained by Mr. Scott Newton (owner) to complete a formal delineation of waters and wetlands under the jurisdiction of federal resource agencies for the proposed Dove Creek Self-storage Development (project), located at 11505 El Camino Real and 11450 Viejo Camino (APN 045-342-009 and 045-342-010) in the City of Atascadero, San Luis Obispo County (County), California. Field surveys included a delineation of all federal waters and wetlands, as defined by the U.S. Army Corps of Engineers (Corps). The survey area encompassed the entire proposed project area and the immediately surrounding wetland and riparian habitats.

This report has been developed by Terra Verde using current Corps guidance concerning waters and wetlands delineations. Determinations are based on field observations made in 2018. Information offered in this report is arranged to describe the delineation objectives, discuss pertinent regulatory contexts, explain the approach and methodology used by Terra Verde in this delineation, and provide a summary of technical results. This report is intended to provide details regarding aquatic resources on site and may be used to support permit application(s) to the Corps, the California Department of Fish and Wildlife, and the Regional Water Quality and Control Board for the proposed development.

Terra Verde determined that no federal wetlands are present on the project site; however, 581 linear feet of non-wetland waters of the U.S. were mapped on the subject property. As necessary, this information may be used to support regulatory permits and/or project approvals from the Corps, the City of Atascadero and other resource agencies. The results of the delineation, as described in this report, are conditional upon a review and final jurisdictional determination by the Corps.
TABLE OF CONTENTS

1.0 INTRODUCTION & BACKGROUND .. 1

1.1 Overview of Site Characteristics .. 1

1.1.1 Current and Historical Land Uses ... 1

1.1.2 Geomorphology and Landscape Context .. 2

1.1.3 Regional Climate .. 2

2.0 REGULATORY CONTEXTS .. 2

2.1 Rationale for the Determination of the Geographic Extent of Waters of the U.S. 2

2.2 Consistency with SWANCC & Rapanos Guidance ... 3

3.0 Field Delineation Methods .. 4

3.1 Overview of Methodology .. 4

3.1.1 Delineation of Wetlands ... 5

3.1.2 Delineation of Non-wetland Waters ... 8

4.0 Results .. 8

4.1 Wetlands Determination ... 8

4.1.1 Hydrology ... 9

4.1.2 Soils ... 9

4.1.3 Vegetation .. 9

4.2 Non-Wetland Waters Determination ... 9

5.0 Summary of Jurisdictional Findings .. 10

6.0 References ... 11
LIST OF APPENDICES

Appendix A – Report Figures

Figure 1: Site Vicinity and Topographic Map
Figure 2: Project Site and Survey Area Map
Figure 3: Hydrologic Connectivity Map
Figure 4: Soil Units Map
Figure 5: Waters and Wetlands Delineation Map

Appendix B – Wetland Determination Data Forms

Appendix C – Arid West Ephemeral and Intermittent Streams OHWM Datasheets

Appendix D – Representative Site Photographs
1.0 INTRODUCTION & BACKGROUND

This waters and wetlands delineation report was prepared by Terra Verde Environmental Consulting, LLC (Terra Verde) on behalf of Mr. Scott Newton (owner) in support of the proposed Dove Creek Self-storage Development Project (project) located at 11505 El Camino Real and 11450 Viejo Camino (APN 045-342-009 and 045-342-010) in the City of Atascadero, San Luis Obispo County (County), California (see Appendix A - Figure 1: Site Vicinity and Topographic Map). This report summarizes the regulatory context, methods, and results of field surveys, which focused on the delineation of federal wetlands and waters of the United States (waters of the U.S.), as defined by section 404 of the Clean Water Act. The survey area included the entire proposed project area, as well as immediately adjacent wetland and riparian habitats (see Appendix A – Figure 2: Project Site and Survey Area Map).

The project site encompasses approximately 4.15 acres of grazed grassland, which is bisected by an unnamed United States Geological Survey (USGS) blue line drainage. This drainage enters the property via a culvert under El Camino Real and meanders generally northeast across the project site before entering a second culvert under Viejo Camino. This drainage eventually discharges into Paloma Creek approximately 0.25 mile northeast of the project site. Paloma Creek flows directly to the Salinas River and eventually the traditionally navigable waters of the Pacific Ocean (see Appendix A – Figure 3: Hydrologic Connectivity Map).

This report has been developed following guidance from the San Francisco District of the U.S. Army Corps of Engineers (Corps) and the U.S. Environmental Protection Agency (EPA) (EPA and Corps, 2008) pertaining to wetland delineations. The results of the delineation are based on field observations made in April and June 2017, and are subject to final review and approval by the Corps. As needed, this report may be used in acquiring regulatory permits and/or project approvals.

1.1 Overview of Site Characteristics

1.1.1 Current and Historical Land Uses

The project site is undeveloped and used as a grazing pasture for a herd of goats. The site is immediately bordered by two public roads – El Camino Real and Viejo Camino, as well as an empty lot on the northwest, and a single-family residence on the southeast. The surrounding landscape consists of residential and commercial developments at variable densities (see Figure 2). The topography, soils, and vegetation of the proposed project site and surrounding areas have been altered considerably through past land conversion, construction of adjacent residential areas, and other anthropogenic alterations (e.g., goat grazing, culverts/stormwater discharge).
infrastructure, etc.). A review of historical aerial imagery indicates the condition of the site has remained relatively unchanged since at least 1994 (Google Earth, 1994-2018).

1.1.2 Geomorphology and Landscape Context

The project site is located in the Salinas USGS Hydrologic Unit and the Santa Margarita Creek-Salinas River watershed, which includes Paloma Creek and associated tributaries (see Appendix A – Figure 3). Elevations within the survey area range from 271 to 280 meters (890 to 920 feet). The project site is situated just west of the Rinconada Fault line in a valley between unnamed ridgelines of the San Luis Ranges (Wiegers and Hart, 2015; USGS, 2018). The geology of the project site consists of young alluvial floodplain deposits, comprised of silty sand and sandy gravel with cobbles deposited along the valley floor (Wiegers and Hart, 2015). Hydrologic resources on the property are limited to a single, ephemeral drainage that conveys surface runoff and storm flows from adjacent areas.

1.1.3 Regional Climate

The regional climate is Mediterranean, with mild, rainy winters and hot, dry summers. Historical temperature and precipitation data was acquired from the Western Regional Climate Center (WRCC) for Paso Robles (Station No. 046730). According to available data, average annual precipitation for a 122-year (1894 to 2016) period for the project region is 15.21 inches (WRCC, 2018). The average minimum and maximum temperatures calculated for the same time period are 60°F in January and 93°F in July and August (WRCC, 2012).

2.0 REGULATORY CONTEXTS

2.1 Rationale for the Determination of the Geographic Extent of Waters of the U.S.

Delineation of the geographic extent of waters of the U.S., including wetlands, within the survey area was consistent with definitions provided in 33 CFR 328.3 (a) (1-8), 328.3 (b, c, and e), as well as routine procedures detailed in the U.S. Army Corps of Engineers Wetlands Delineation Manual (1987 Manual) (Corps, 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region, Version 2.0 (2008 Arid West Regional Supplement) (Corps, 2008). As defined in Section 404 of the CWA, the limits of Corps jurisdiction in non-tidal waters extends to the ordinary high water mark (OHWM) and includes all adjacent wetlands. The following definitions are used by the Corps and EPA for the identification of wetlands and, as such, were used for the identification and delineation of wetlands at the project site:
Waters of the U.S. are defined in Section 404 of the CWA as:

"All waters which are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide; including all interstate waters including interstate wetlands, all other waters such as intrastate lakes, rivers, streams, mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds, the use, degradation or destruction of which could affect interstate or foreign commerce."

Further, wetlands are considered waters of the U.S., and are identified as:

"Those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas."

The Corps uses a three-parameter approach for identifying and delineating jurisdictional wetlands, where a wetland is defined as a feature associated with waters of the U.S., which is characterized by a dominance of hydrophytic vegetation, hydric soils, and wetland hydrology.

2.2 Consistency with SWANCC & Rapanos Guidance

Following U.S. Supreme Court rulings in two prominent court cases addressing the extent of federal jurisdiction (i.e., Solid Waste Agency of Northern Cook County [SWANCC] v. Corps et al. [531 U.S. 159, 2001]; and Rapanos et ux., et al. v. United States [547 U.S. 715, 2006]) led to the development of federal guidance that requires careful examination and documentation of the physical location(s) of and hydrologic connections among waters and wetlands. To determine federal jurisdiction, emphasis is given to surface hydrologic connections between a wetland and “navigable waters” or “adjacency” of a wetland to traditionally navigable waters, and, thus, a “significant nexus” to interstate commerce. In addition, waters and wetland features can be determined to be under federal jurisdiction by the Corps or EPA if a significant nexus can be shown between the wetland feature in question and its contribution to the maintenance or restoration of the physical, chemical, or biological integrity of downstream waters that are traditionally navigable. Federal guidance for field delineation procedures that address the Rapanos decision has been offered by the EPA and the Corps in a joint memorandum issued on June 5, 2007 (EPA and Corps, 2008).
3.0 FIELD DELINEATION METHODS

3.1 Overview of Methodology

Prior to conducting field surveys, a desktop review was completed, which included a review of current and historical aerial imagery (Google Earth, 1994 - 2018), an online Soil Survey for the County of San Luis Obispo (U.S. Dept. of Ag., 2018), USGS topographic maps (USGS, 2018), regional weather data (WRCC, 2012), the U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) (USFWS, 2018), and preliminary site development plans.

Terra Verde botanists Kristen Nelson and Amy Golub completed a formal wetland delineation on May 17, 2018 along the vegetated channel bottom and lower floodplain terrace associated with the drainage on site. Delineation methods followed routine procedures detailed in the 1987 Manual (Corps, 1987) and the 2008 Arid West Regional Supplement (Corps, 2008). In addition, wetlands were classified based on hydrogeomorphic classes (e.g., riverine, slope, etc.) described by Brinson (1993) and Brinson et al. (1995).

Field delineation of wetlands included an assessment of the hydrology, soil characteristics, and vegetation at three sampling points (i.e., SP-01, SP-02, and SP-03). Data was recorded using the Wetland Determination Data Form provided in the 2008 Arid West Regional Supplement (Corps, 2008). At each sampling point, a soil test pit was excavated to a depth of at least 12 inches, vegetation was characterized within a 5-foot radius of the excavated soil test pit, and indicators of wetland hydrology were documented (see Appendix B – Wetland Determination Data Forms). Sampling was conducted in areas that displayed apparent indicators of wetland hydrology and vegetation.

The assessment of non-wetland waters included identifying the presence of field indicators for OHWM within the subject drainage. This assessment followed guidelines provided in A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States (OHWM Manual) (Lichvar and McColley, 2008). In addition, all waters and wetlands were assessed for hydrologic connectivity and/or adjacency to traditionally navigable waters and their tributaries. Connectivity was confirmed by determining that the unnamed drainage on site is hydrologically connected to Paloma Creek and the traditionally navigable waters of the Pacific Ocean via the Salinas River (see Appendix A – Figure 3). The limits of waters and wetlands of the U.S. were pin-flagged in the field and then recorded using a Trimble Global Positioning System (GPS) unit.
3.1.1 Delineation of Wetlands

Evidence of Wetland Hydrology
Consistent with the 1987 Manual (Corps, 1987), the 2008 Arid West Regional Supplement (Corps, 2008), and current regulatory guidance (Corps, 1992), wetland hydrology can be identified by evaluating a variety of direct and indirect indicators, including stream gauge or well data, flood predictions (i.e., FEMA maps), historic records pertaining to the study area, and visual observation of field indicators for the identification of jurisdictional waters and wetlands. Field indicators may include inundation and/or saturation, sediment deposition, drainage patterns, hydric soil characteristics, watermarks, drift lines, presence of oxidized pores associated with living roots and rhizomes (i.e., rhizospheres), and water-stained leaves (Corps, 1987).

Wetland hydrology is present at a location if field observations indicate the area has a high probability of being periodically inundated or saturated to the soil surface for a sufficient duration during the growing season to develop anaerobic conditions in the surface soil environment (i.e., root zone) (Corps, 1987). According to guidance provided in the 2008 Arid West Regional Supplement, if at least one primary indicator or at least two secondary indicators of hydrology are present at a sample point, the wetland hydrology criterion is met (Corps, 2008). Observations of wetland hydrology were recorded at each sample point to document evidence of inundation or soil saturation.

Several types of evidence were examined to determine whether wetland hydrology previously existed or currently exists. In addition, the type and frequency of site manipulation and anthropogenic disturbances were considered for their potential to impact or alter current and historical site hydrology.

Identification of Hydric Soils
The presence of hydric soils was assessed based on the criteria outlined in the 1987 Manual (Corps, 1987) and the 2008 Arid West Regional Supplement (Corps, 2008). Hydric soils are defined as soils “that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part” (U.S. Dept. of Ag., 1994). Determination of whether or not a soil is hydric is based on the fulfillment of at least one of four technical criteria (U.S. Dept. of Ag., 2002), which can be satisfied using a combination of published soils information and field indicators. Field indicators for determining whether a soil satisfies the hydric soil definition and the technical criteria for hydric soils are listed in Field Indicators of Hydric Soils in the United States (U.S. Dept. of Ag., 2006).

Following the guidance provided in the above-referenced documents, the presence of hydric soils within the survey area was determined using a combination of direct field observations and a
review of available online resources, including the Soil Survey of San Luis Obispo County, Web Soil Survey (U.S. Dept. of Ag., 2018) and the USFWS NWI (USFWS, 2018). In the field, soil test pits were excavated at each of three sampling points to examine the upper 12 inches of the soil profile for hydric soil indicators. Specifically, a Munsell Soil Color Book (2000) was used to classify the colors of matrix soils and redoximorphic (redox) concentrations within the matrix. The 2017 Pocket Guide to Hydric Soil Indicators (Wetland Training Institute [WTI], 2017) was used to determine the texture of soils, and to assess the location, type, and extent of matrix soil colors and redox concentrations, to determine whether they qualified as hydric soils.

According to the NRCS online soil survey of San Luis Obispo County, three soil units occur within the survey area (U.S. Dept. of Ag., 2018). These include: Unit 193 (San Andreas-Arujo complex, 9 to 15 percent slopes), Unit 198 (Santa Lucia-Lopez complex, 15 to 50 percent slopes), and Unit 208 (Still clay loam, 0 to 2 percent slopes) (see Figure 4 – Soil Units Map). These soil units are not listed as hydric soils (U.S. Dept. of Ag., 2018). A summary of the dominant characteristics of these soil types is provided below.

Soil Unit 193 – San Andreas-Arujo complex, 9 to 15 percent slopes
The parent material of this soil type is residuum weathered from sandstone. The drainage class of this unit is well drained, and it is composed of sandy loam over weathered bedrock. This soil type tends to occur on back slopes and side slopes and is designated as farmland of statewide importance.

Soil Unit 198 – Santa Lucia-Lopez complex, 15 to 50 percent slopes
The parent material of this soil type is residuum weathered from shale. The drainage class of this unit is well drained, and it is composed of channery clay loam over weathered bedrock. This soil type tends to occur on back slopes and side slopes.

Soil Unit 208 – Still clay loam, 0 to 2 percent slopes
The parent material of this soil is alluvium derived from sedimentary rock. The drainage class of this unit is well drained, and it is composed mostly of clay loam and stratified loam to clay loam. This soil type tends to occur on toe slopes and treads and is considered prime farmland if irrigated.

Dominance of Hydrophytic Vegetation
On June 1, 2012, the 2012 National Wetland Plant List (NWPL) (Lichvar et al., 2012) replaced the 1988 U.S. Fish and Wildlife Service’s National list of plant species that occur in wetlands for use under the CWA, Swamp Buster, and National Wetland Inventory programs. The NWPL and regional supplements have since been revised with updated plant listings. The Arid West 2016 Regional Wetland Plant List (2016 Regional List) (Lichvar et al., 2016) is the most current version.
available for use in the Arid West region, including coastal areas of California. The updated 2016 Regional List indicates the relative frequency that a species occurs in wetland habitats and is used to determine whether the hydrophytic vegetation parameter is met when conducting wetland delineations under the CWA.

Species included on the 2016 Regional List are assigned one of the following wetland indicator statuses (Lichvar et al., 2012):

- **Obligate (OBL)**: plants that almost always occur in wetlands.
- **Facultative Wetland (FACW)**: plants that usually occur in wetlands but may occur in non-wetlands.
- **Facultative (FAC)**: plants that are equally likely to occur in wetlands and non-wetlands.
- **Facultative Upland (FACU)**: plants that usually occur in non-wetlands but may occur in wetlands.
- **Upland (UPL)**: plants that almost never occur in wetlands; plants not included on the list are considered UPL.

Dominance of hydrophytic vegetation is determined by identifying all plant species within a 5-foot radius surrounding each soil excavation pit for herbaceous and shrub cover, and a 30-foot radius for tree and woody vine cover; documenting the absolute percent cover of each species within each stratum (i.e., herb, shrub, tree, and woody vine) for the sampling plot; and noting the indicator status for each (i.e., UPL, FACU, FAC, FACW, or OBL). None of the sampling points supported tree, shrub, or woody vine cover. Dominant species were then determined using the 50/20 rule, as recommended in the 2008 Arid West Regional Supplement (Corps, 2008). Based on this method, dominant species are those species that individually or collectively constitute more than 50 percent of the total vegetative cover (i.e., relative cover) within each stratum, in addition to those species that individually constitute 20 percent or more of the relative cover within each vegetation stratum. Species identifications and taxonomic nomenclature followed the second edition of The Jepson Manual: Vascular Plants of California (Baldwin et al., 2012), as well as taxonomic updates provided in the Jepson eFlora (Jepson Flora Project, 2018).

According to both the Corps’ 1987 Manual (Corps, 1987) and 2008 Arid West Regional Supplement (Corps, 2008), the hydrophytic vegetation parameter for wetlands is met when, under normal circumstances, more than 50 percent of the dominant species across all strata have an indicator status of OBL, FACW, or FAC.

Connectivity/Adjacency

As noted above, particular emphasis is given to surface hydrologic connectivity of wetlands to traditionally navigable waters, including adjacency of wetlands to jurisdictional waters.
Connectivity of wetlands was established via field work, a review of aerial imagery, and an assessment of site-specific topography.

3.1.2 Delineation of Non-wetland Waters

Within the project site, the unnamed drainage exhibits a narrow, gently-sloped channel that meanders across an open grassy field. Despite grazing impacts, the banks and channel bottom are vegetated with herbaceous species, with a clear change in the composition and cover from the channel bottom to the bank and adjacent low terrace. As such, these areas were assessed for evidence of an OHWM to determine the presence of waters of the U.S. The *OHWM Manual* (Lichvar and McColley, 2008) provides guidance on identifying field indicators of OHWM, including protocols for characterizing the overall system. Data was recorded using the *Updated Datasheet for the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States* (OHWM Data Sheet) (Curtis and Lichvar, 2010). Completed data sheets are provided in Appendix C (Arid West Intermittent and Ephemeral Streams OHWM Datasheets).

Cross-sectional Analysis

Cross sectional analyses were conducted at three locations along each drainage feature where there was a clear change in the limits of either the OHWM or the top of bank. The physical and biological characteristics present at each cross section were documented on OHWM Data Sheets, including a sketch of the site topography at each cross section. Specifically, the floodplain units were described for each cross section through the vegetation cover, sediment texture, and hydrology indicators at that location. The limits of OHWM were determined based on the presence of hydrology indicators such as debris wracking, shelving, water marks, and change in sediment texture/substrate.

Connectivity/Adjacency

Connectivity to adjacent traditional navigable waters was assessed via field investigations, a review of aerial photography, and information obtained regarding storm water and other underground water collection systems.

4.0 RESULTS

4.1 Wetlands Determination

Terra Verde completed a wetland delineation in May 2018 and determined that no federal wetlands are present within the project site. The results of the delineation and sampling point data was documented on Wetland Determination Data Forms (Appendix B) and is detailed below.
4.1.1 Hydrology

Field observations of wetland hydrology were limited to secondary indicators, including: riverine drift deposits (B3), drainage patterns (B10), and saturation visible on aerial imagery (C9). In addition, the FAC-Neutral Test (D5) was documented as a secondary indicator at SP-02. Wetland hydrology was determined to be present at all three sampling points (see Figure 5: Waters and Wetlands Delineation Map).

4.1.2 Soils

Soil test pits were excavated at each sampling point to classify the color and texture of the soil horizons down to at least 12 inches. Soil textures consisted of clay loam with a significant component of organic matter at all three sampling points. No hydric soils were identified on site. A soil color of 10YR 2/1 was documented at all three sampling points, with no redox features present (see Appendix D – Representative Site Photographs, Photo 1).

4.1.3 Vegetation

Greater than 50 percent relative cover of hydrophytic vegetation was documented at all three sampling points, which was dominated by common lippia (*Phyla nodiflora*; FACW), Mediterranean barley (*Hordeum marinum* subsp. *gussoneanum*; FAC), and beardless wild rye (*Elymus triticoides*; FAC). Vegetation on the banks of the drainage and adjacent areas transitions to a composition of non-wetland species dominated by wall barley (*Hordeum murinum*), heart-podded hoary cress (*Lepidium draba*), and occasional dense patches of yellow star-thistle (*Centaurea solstitialis*), as well as other grazed grasses.

4.2 Non-Wetland Waters Determination

The unnamed drainage is likely considered non-wetland waters of the U.S. based on the presence of a clearly-defined OHWM, indicated by a distinct transition in vegetative cover and composition between the channel bottom and gently-sloped bank, and connectivity to traditionally navigable waters. Based on a review of aerial imagery, this drainage appears to originate somewhere in the foothills of the San Luis Range Mountains west of Atascadero. It flows through areas of rural residential, agricultural, and commercial developments, and has been substantially modified in the areas upstream of the project site. It enters the project site through a partially impeded culvert under El Camino Real, and exits the site through another partially blocked culvert under Viejo Camino. Due to the historical alterations of natural flow patterns in the surrounding landscape, the project site is occasionally subject to temporary inundation and ponding following significant precipitation events. However, the drainage system is generally ephemeral and a lack
of hydric soils indicates that the site is well drained, likely only ponding for brief periods following significant rain events.

5.0 SUMMARY OF JURISDICTIONAL FINDINGS

The jurisdictional waters identified on the project site fall under the regulatory jurisdiction of the Corps. A summary of the type and extent of jurisdictional waters and wetlands is presented in Table 1 - Extent and Location of Jurisdictional Waters and Wetlands.

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Location</th>
<th>Acres</th>
<th>Length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waters of the U.S.</td>
<td>Ephemeral drainage</td>
<td>0.08</td>
<td>581</td>
</tr>
<tr>
<td>Federal Wetlands</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 2 (Summary of Sampling Point Data for Wetland Delineation), provides a summary of the data collected at each of the three sampling points during the wetland delineation.

<table>
<thead>
<tr>
<th>Sample Point</th>
<th>Wetland Vegetation</th>
<th>Hydric Soils</th>
<th>Wetland Hydrology</th>
<th>Connectivity/Adjacency</th>
<th>Federal Wetland</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-01</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SP-02</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SP-03</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

The geographic extent of waters of the U.S. totals approximately 581 linear feet and 0.08 acre within the project site, but no federal wetlands are present. Section 404 of the CWA requires authorization from the Corps for the discharge of dredged or fill material into all waters of the U.S., including adjacent wetlands. The findings of this federal waters and wetlands delineation is subject to review and final concurrence by the Corps.
6.0 REFERENCES

APPENDIX A: Report Figures

Figure 1: Site Vicinity and Topographic Map

Figure 2: Project Site and Survey Area Map

Figure 3: Hydrologic Connectivity Map

Figure 4: Soil Units Map

Figure 5: Waters and Wetlands Delineation Map
Dove Creek Self-storage Project - Waters and Wetlands Delineation

Figure 1: Site Vicinity and Topographic Map

Project Location
Survey Area
Figure 3: Hydrologic Connectivity Map

Survey Area

Blue Line Drainage

Stream data: County of San Luis Obispo, 2006.

Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap contributors, and the GIS User Community.
Dove Creek Self-storage Project - Waters and Wetlands Delineation

Figure 4: Soil Units Map

Survey Area
Unnamed Blue Line Drainage

Soil Units
San Andreas-Arujo Complex, 9-15% Slopes
Santa Lucia-Lopez Complex, 15-50% Slopes
Still Clay Loam, 0-2% Slopes
Figure 5: Waters and Wetlands Delineation Map

Survey Area

Waters of the State, U.S.*

OHWM/Wetland Delineation Sampling Points

*Extent of waters of the state and U.S. mapped by Terra Verde in May 2018.
APPENDIX B: Wetland Determination Data Forms
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: DOWNTOWN SELF STORAGE City/County: ATASCADERO, SLO Sampling Date: 05/17/00
Applicant/Owner: Scott Newman State: CA Sampling Point: 01
Investigator(s): K. Nelson, A. Collier, B. Hough Section, Township, Range: CA T39S R1E
Landform (hillslope, terrace, etc.): SWALE Local relief (concave, convex, none): CONCAVE Slope (%): 2
Subregion (LRR): LPR C Lat: 35.458741 Long: 120.630670 Datum: NAD88
Soil Map Unit Name: STILL CLAY LOAM NWI classification: PEMA

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ✔ No (If no, explain in Remarks.)
Are Vegetation _____ Soil _____, or Hydrology _____ significantly disturbed? Are “Normal Circumstances” present? Yes ✔ No
Are Vegetation _____, Soil _____, or Hydrology _____ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes ✔ No</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes ✔ No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes ✔ No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: Undeveloped lot bordered by residential developments, a public road, and a wetland. Site is an open, weedy grassland, currently grazed by goats. Ephemeral blue line drainage crosses property, which occasionally overtops flood portions of the field following storms.

VEGETATION – Use scientific names of plants.

<table>
<thead>
<tr>
<th>Tree Stratum (Plot size: N/A)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum (Plot size: N/A)</th>
<th>= Total Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum (Plot size: 1.5’ x 2.0’)</th>
<th>= Total Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Phyla nodiflora</td>
<td>42 ✔ FACW</td>
</tr>
<tr>
<td>2. Hordeum jubatum</td>
<td>30 ✔ FACW</td>
</tr>
<tr>
<td>3. Arenaria solstitialis</td>
<td>25 ✔ FACW</td>
</tr>
<tr>
<td>4. Festuca perennis</td>
<td>8</td>
</tr>
<tr>
<td>5. Hierochloe incana</td>
<td>5</td>
</tr>
<tr>
<td>6. Anthus centaurea</td>
<td>2</td>
</tr>
<tr>
<td>7. Lotus corniculata</td>
<td>1</td>
</tr>
<tr>
<td>8. Bromus catharticus</td>
<td>1</td>
</tr>
<tr>
<td>9. Geranium macrophyllum</td>
<td>117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody-Grass Stratum (Plot size: 1’)</th>
<th>= Total Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hordeum jubatum</td>
<td>1</td>
</tr>
<tr>
<td>2. Brassica nigra</td>
<td>1</td>
</tr>
</tbody>
</table>

| % Bare Ground in Herb Stratum | 0 | % Cover of Biotic Crust | 0 |

| Dominance Test worksheet: |
|----------------------------|---|
| Number of Dominant Species That Are OBL, FACW, or FAC: | 2 (A) |
| Total Number of Dominant Species Across All Strata: | 3 (B) |
| Percent of Dominant Species That Are OBL, FACW, or FAC: | 67% (A/B) |

<table>
<thead>
<tr>
<th>Prevalence Index worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total % Cover of: Multiply by:</td>
</tr>
<tr>
<td>OBL species 0 x 1 = 0</td>
</tr>
<tr>
<td>FACW species 42 x 2 = 84</td>
</tr>
<tr>
<td>FAC species 39 x 3 = 117</td>
</tr>
<tr>
<td>FACU species 3 x 12</td>
</tr>
<tr>
<td>UPL species 33 x 5 = 165</td>
</tr>
<tr>
<td>Column Totals: 117 (A) 378 (B)</td>
</tr>
<tr>
<td>Prevalence Index = B/A = 3.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Indicators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Dominance Test is >50%</td>
</tr>
<tr>
<td>✔ Prevalence Index is 33.0^1</td>
</tr>
<tr>
<td>Morphological Adaptations ^1 (Provide supporting data in Remarks or on a separate sheet)</td>
</tr>
<tr>
<td>Problematic Hydrophytic Vegetation ^1 (Explain)</td>
</tr>
</tbody>
</table>

^1Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Hydrophytic Vegetation Present? Yes ✔ No
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Color (moist)</th>
<th>%</th>
<th>Redox Features</th>
<th>Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1"</td>
<td>10NR 21</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Location: PL=Pore Lining, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Redox Depressions (F8)
- Vernal Pools (F9)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.

Restrictive Layer (if present):

<table>
<thead>
<tr>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (inches):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydric Soil Present?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Remarks:

HYDROLOGY

Wetland Hydrology Indicators:

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B8)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary Indicators (2 or more required):

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drift Deposits (B3) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Grayish Burrows (B9)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes | No
- Water Table Present? Yes | No
- Saturation Present? Yes | No

| Depth (inches): |

Wetland Hydrology Present? Yes | No

Remarks:

Ephemeral Drainage Channel in Seasonally Flooded Field; Inundation/Saturation Are Ephemeral, Following Significant Winter Precipitation.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Dove Creek Self Storage
City/County: Atascadero
Applicant/Owner: Scott Newton
State: CA
Sampling Point: 02
Investigator(s): K. Nelson, A. Caleo, B. Dugas
Section, Township, Range: CA T29S R12E
Landform (hillslope, terrace, etc.): SWALE
Local relief (concave, convex, none): Concave
Subregion (LRR): 1PL1
Lat.: 35.4753727
Long.: 120.637726
Datum: NAD 83
Soil Map Unit Name: Still clay loam
NWI classification: PCMA

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☑ No ☐
Are Vegetation ______, Soil ______, or Hydrology ______ significantly disturbed?
Are “Normal Circumstances” present? Yes ☑ No ☐

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes ☑ No ☐</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes ☐ No ☑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td>Yes ☑ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes ☑ No ☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
Undeveloped lot bordered by residential developments and public roadways. Site is an open, weedy field, currently a historically grazed by cattle, ephemeral blue green drainage crosses the property, which occasionally overtops and floods portions of the field following storms.

VEGETATION – Use scientific names of plants.

<table>
<thead>
<tr>
<th>Tree Stratum (Plot size: N/A)</th>
<th>Absolute % Cover</th>
<th>Dominant Indicator Species?</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum (Plot size: N/A)</th>
<th>Total Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum (Plot size: 6 x 15')</th>
<th>Absolute % Cover</th>
<th>Dominant Indicator Species?</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PHYLLOSTYLOIDES</td>
<td>75</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td>2. ELYMUS TRITICOIDES</td>
<td>28</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td>3. HORDUEUM MARINUM</td>
<td>20</td>
<td>UPL</td>
<td></td>
</tr>
<tr>
<td>4. CENTAURYCA GLYSINUSIS</td>
<td>12</td>
<td>UPL</td>
<td></td>
</tr>
<tr>
<td>5. HORDUEUM MIRINUM</td>
<td>8</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td>6. LERIDUM DRABA</td>
<td>7</td>
<td>UPL</td>
<td></td>
</tr>
<tr>
<td>7. HIRSCHFELDIA INCANA</td>
<td>2</td>
<td>UPL</td>
<td></td>
</tr>
<tr>
<td>8. ANTHEMIS FOLIAE</td>
<td>1</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td>1. LOS CERCANE EUPHYLLUM</td>
<td>154</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum (Plot size: N/A)</th>
<th>Total Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% Bare Ground in Herb Stratum</th>
<th>☐</th>
<th>% Cover of Biotic Crust</th>
<th>☐</th>
</tr>
</thead>
</table>

Remarks:
Area grazed regularly by goats. Slight elevation change between drainage bottom and adjacent upland is marked by transition in vegetation. Channel bottom supports transitional mix of wetland and non-wetland species.

Dominance Test worksheet:
Number of Dominant Species That Are OBL, FACW, or FAC: 2
Total Number of Dominant Species Across All Strata: 2
Percent of Dominant Species That Are OBL, FACW, or FAC: 100

Prevalence Index worksheet:
Total % Cover of OBL species x 1 = 0
FACW species x 2 = 150
FAC species x 3 = 45
FACU species x 4 = 36
UPL species x 5 = 105
Column Totals: 154
Prevalence Index = 154 / 4 = 38.5

Hydrophytic Vegetation Indicators:
- Dominance Test is >50%
- Prevalence Index is ≤ 3.0
- Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
- Problematic Hydrophytic Vegetation (Explain)

Hydrophytic Vegetation Present? Yes ☑ No ☐

US Army Corps of Engineers
Arid West – Version 2.0
Soil

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Redox Features</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-12"</td>
<td>10YR 2/1</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td>C1110</td>
<td>HIGH O.M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains.
Location: PL=Pore Lining, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histose Epepidon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Redox Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Restrictive Layer (if present):

- Type:
- Depth (inches):

Hydric Soil Present? Yes [] No [X]

Remarks:

Unsaturated soil with high conc. of O.M. in top 2" and deposits of small-medium rocks. Site well-drained.

Hydrology

Wetland Hydrology Indicators:

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B4)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Phosphates along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary Indicators (2 or more required):

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drift Deposits (B3) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Crayfish Burrows (C3)
- Saturation Visible on Aerial Imagery (C6)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

<table>
<thead>
<tr>
<th>Surface Water Present?</th>
<th>Yes [] No [X]</th>
<th>Depth (inches):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Table Present?</td>
<td>Yes [] No [X]</td>
<td>Depth (inches):</td>
</tr>
<tr>
<td>Saturation Present?</td>
<td>Yes [] No [X]</td>
<td>Depth (inches):</td>
</tr>
<tr>
<td>(includes capillary fringe)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wetland Hydrology Present? Yes [X] No []

Remarks:

Ephemeral drainage channel in seasonally flooded field; inundation/saturation are ephemeral, following significant winter storms.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Dove Creek Self-Storage City/County: A forkadero/SLO Sampling Date: 05/17/18
Applicant/Owner: Scott Newton State: CA Sampling Point: 03
Investigator(s): Nelson, A Golub Section, Township, Range: CA T29S R12E
Landform (hillslope, terrace, etc.): Swale Local relief (concave, convex, none): Concave Slope (%): 0-2
Subregion (LRR): LRR-C Lat: 35.453245 Long: -120.637836 Datum: NAD83
Soil Map Unit Name: Still Clay loam NWI classification: REMA

Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly disturbed? Are “Normal Circumstances” present? Yes No
Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Is the Sampled Area within a Wetland? Yes No

Remarks:
Undeveloped lot bordered by residential developments & public roads. Site is an open, weedy field, currently not historically grazed by goats. Gopher burrows & drainage ditches cross the site, which occasionally overtops & floods portions of the field following storms.

VEGETATION – Use scientific names of plants.

Tree Stratum (Plot size: N/A)

| 1. |
| 2. |
| 3. |
| 4. |

= Total Cover

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum (Plot size: N/A)</th>
</tr>
</thead>
</table>

| 1. |
| 2. |
| 3. |
| 4. |

| 5. |

= Total Cover

<table>
<thead>
<tr>
<th>Herb Stratum (Plot size: 5' x 15')</th>
</tr>
</thead>
</table>

| 1. Hordeum murinum |
| 2. Lepidium perua |
| 3. Hordeum murinum |
| 4. Medicago polymorpha |
| 5. Convovulcus arvensis |
| 6. Bromus catharticus |
| 7. Centaurea solstitialis |
| 8. Anthemis cotula |

<table>
<thead>
<tr>
<th>Woody-Vine Stratum (Plot size: 5' x 15')</th>
</tr>
</thead>
</table>

| 1. Festuca perennis |
| 2. Bromus diandrus |

| 3. |

= Total Cover

| % Bare Ground in Herb Stratum | 0 |
| % Cover of Biotic Crust | 0 |

<table>
<thead>
<tr>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Dominant Species That Are OBL, FACW, or FAC:</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Total Number of Dominant Species Across All Strata:</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC:</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prevalence Index worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total % Cover of:</td>
</tr>
<tr>
<td>Multiply by:</td>
</tr>
<tr>
<td>OBL species</td>
</tr>
<tr>
<td>FACW species</td>
</tr>
<tr>
<td>FAC species</td>
</tr>
<tr>
<td>FACU species</td>
</tr>
<tr>
<td>UPL species</td>
</tr>
<tr>
<td>Column Totals:</td>
</tr>
<tr>
<td>(A)</td>
</tr>
<tr>
<td>(B)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prevalence Index = B/A =</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Indicators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Dominance Test is >50%</td>
</tr>
<tr>
<td>Prevalence Index = ≤3.0¹</td>
</tr>
<tr>
<td>Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)</td>
</tr>
<tr>
<td>Problematic Hydrophytic Vegetation (Explain)</td>
</tr>
</tbody>
</table>

1Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Hydrophytic Vegetation Present? Yes No
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Redox Features</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1"</td>
<td>LOVE 2/1</td>
<td></td>
<td>C16</td>
<td>High O.M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Type:** C=Congestion, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains.
2. **Location:** PL=Pore Lining, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)
- Histosol (A1)
- Histic Epeipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Redox Depressions (F8)
- Vernal Pools (F9)

Indicators for Problematic Hydric Soils:
- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):
- Type:
- Depth (inches):

Hydric Soil Present? Yes ☑ No

Remarks:
HIGH CONC. OF O.M. IN TOP 2" DARK, UNIFORM SOIL, WITH NO REDOX CONCENTRATIONS. ALLUVAL DEPOSITS OF SMALL-MED ROCKS SITE IS WELL-DrAINED & DOES NOT SUPPORT HYDRIC SOILS

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (minimum of one required; check all that apply):
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required):
- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)
- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Crayfish Burrows (C3)
- Saturation Visible on Aerial Imagery (C6)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:
- Surface Water Present? Yes ☑ No
- Water Table Present? Yes ☑ No
- Saturation Present? (includes capillary fringe) Yes ☑ No

Wetland Hydrology Present? Yes ☑ No

Remarks:
EPHEMERAL DRAINAGE CHANNEL IN EPHEMERALLY FLOODED FIELD, INUNDATION / SATURATION ARE EPHEMERAL FOLLOWING SIGNIFICANT WINTER PRECIPITATION.
APPENDIX B: Arid West Intermittent and Ephemeral Streams
OHWM Datasheets

Dove Creek Self-storage Development Project
Waters and Wetlands Delineation Report
Atascadero, San Luis Obispo County, California
This page intentionally left blank.
Arid West Ephemeral and Intermittent Streams OHWM Datasheet

Project: DOVE CREEK SELF-STORAGE
Project Number: DCSS
Stream: Unnamed (Blue line)
Investigator(s): K. Nelson, A. Low

Date: 05/17/18
Time: 15:45
Town: Mescalero
State: NM
Photo begin file#: Photo end file#: Location Details: WEST
Projection: Datum: NAD83
Coordinates: 35.463727 -120.639320

Potential anthropogenic influences on the channel system:
SITE IS BORDURED BY PUBLIC ROADS & DEVELOPMENT. INLET & OUTLET CULVERTS ON OPPOSITE ENDS OF THE SITE ARE BOTH PARTIALLY BLOCKED BY DEBRIS PILE WITH DEBRIS & TRASH ACCUMULATION. SITE GRAZED BY COWS.

Brief site description: UNDEVELOPED, OPEN FIELD CONSISTING OF WEEDY GRASSLAND. DRAINAGE IS NARROW, WITH SHALLOW BANKS; MUCH OF THE SITE OCCASIONALLY FLOODES IMMEDIATELY FOLLOWING SIGNIFICANT PRECIPITATION.

Checklist of resources (if available):
- [✓] Aerial photography
 Dates: 1994-2017
- [✓] Topographic maps
- [] Geologic maps
- [] Vegetation maps
- [✓] Soils maps
- [] Rainfall/precipitation maps
- [] Existing delineation(s) for site
- [✓] Global positioning system (GPS)
- [] Other studies

- [] Stream gage data
 Gage number:
 Period of record:
 History of recent effective discharges
 Results of flood frequency analysis
 Most recent shift-adjusted rating
 Gage heights for 2-, 5-, 10-, and 25-year events and the most recent event exceeding a 5-year event

Procedure for identifying and characterizing the floodplain units to assist in identifying the OHWM:

1. Walk the channel and floodplain within the study area to get an impression of the geomorphology and vegetation present at the site.
2. Select a representative cross section across the channel. Draw the cross section and label the floodplain units.
3. Determine a point on the cross section that is characteristic of one of the hydrogeomorphic floodplain units.
 a) Record the floodplain unit and GPS position.
 b) Describe the sediment texture (using the Wentworth class size) and the vegetation characteristics of the floodplain unit.
 c) Identify any indicators present at the location.
4. Repeat for other points in different hydrogeomorphic floodplain units across the cross section.
5. Identify the OHWM and record the indicators. Record the OHWM position via:
 - [] Mapping on aerial photograph
 - [✓] GPS
 - [] Digitized on computer
 - [] Other:
Cross section drawing:

![Cross section drawing image]

OHWM

GPS point: DCS5-01

Indicators:
- [] Change in average sediment texture
- [x] Change in vegetation species
- [] Change in vegetation cover
- [x] Break in bank slope
- [] Other: __________________________
- [] Other: __________________________

Comments:

"LOW FLOW CHANNEL IMMEDIATELY UPSTREAM OF CULVERT UNDER VIEJO CAMINO"

Floodplain unit:
- [x] Low-Flow Channel
- [] Active Floodplain
- [] Low Terrace

GPS point: DCS5-01

Characteristics of the floodplain unit:

- Average sediment texture: **Clay loam**
- Total veg cover: 95 %
 - Tree: 0 %
 - Shrub: 0 %
 - Herb: 95 %

Community successional stage:

- [] NA
- [x] Early (herbaceous & seedlings)
- [] Mid (herbaceous, shrubs, saplings)
- [] Late (herbaceous, shrubs, mature trees)

Indicators:

- [] Mudcracks
- [] Ripples
- [x] Drift and/or debris
- [] Presence of bed and bank
- [] Benches
- [] Soil development
- [x] Surface relief
- [] Other: __________________________
- [] Other: __________________________
- [] Other: __________________________

Comments:

"LOW FLOW CHANNEL DEFINED BY CHANGE IN ELEVATION / BENCHING & CHANGE IN VEGETATION SPECIES & COVER"
Project ID: DCS5 Cross section ID: 02 Date: 05/17/18 Time: 1600

Cross section drawing:

OHWM

GPS point: DCS5-07
35.453724/-120.637320

Indicators:
- [] Change in average sediment texture
- [] Change in vegetation species
- [] Change in vegetation cover
- [x] Break in bank slope

Other: ____________________________
Other: ____________________________

Comments:
Vegetated Swale - Low Flow Channel Defined by FAC/FACW Species

Floodplain unit:
- [x] Low-Flow Channel
- [] Active Floodplain
- [] Low Terrace

GPS point: DCS5-02

Characteristics of the floodplain unit:
Average sediment texture: CLAY LOAM
Total veg cover: 100% Tree: 0% Shrub: 0% Herb: 100%

Community successional stage:
- [x] Early (herbaceous & seedlings)
- [] Mid (herbaceous, shrubs, saplings)
- [] Late (herbaceous, shrubs, mature trees)

Indicators:
- [x] Mudcracks
- [x] Ripples
- [x] Drift and/or debris
- [x] Presence of bed and bank
- [] Benches

Other: ____________________________
Other: ____________________________

Comments:
Low Flow Channel Defined by Transition in Vegetation Species & Change in Elevation Along Gently Sloped Bank
Cross section drawing:

Diagram of the cross section with an arrow indicating the direction N and markings for OHWM and vegetated channel.

OHWM

GPS point: DCSS - 03

Indicators:
- [x] Change in average sediment texture
- [x] Change in vegetation species
- [x] Change in vegetation cover
- [x] Break in bank slope
- Other: ______________________
- Other: ______________________

Comments: SHALLOW, MEANDERING DRAINAGE WITH GENTLY SLOPED BANKS. CHANNEL & BANKS VEGETATED WITH HERBACEOUS COVER - GRASSES & RUDERAL WEEPY SPECIES.

Floodplain unit: [x] Low-Flow Channel

GPS point: DCSS - 03

Characteristics of the floodplain unit:
- Average sediment texture: Clay loam
- Total veg cover: 45% Tree: 20% Shrub: 0% Herb: 25%

Community successional stage:
- NA
- [x] Early (herbaceous & seedlings)

Indicators:
- [x] Mudcracks
- [x] Ripples
- [x] Drift and/or debris
- [x] Presence of bed and bank
- [x] Benches

- Soil development
- Surface relief
- Other: SCOUR

Comments: LOW FLOW CHANNEL; IMMEDIATELY DOWNSTREAM OF CULVERT UNDER EL CAMINO REAL. CHANNEL IS SPARSELY VEGETATED WITH HERBACEOUS COVER; A SINGLE MATURE WILLOW IS ROOTED AT EDGE OF CHANNEL.
APPENDIX D: Representative Site Photographs
This page intentionally left blank.
Photo 1. View southwest of ephemeral drainage bisecting the proposed development area.

Photo 2. View northeast of the existing culvert under Viejo Camino.
Photo 3. View northwest toward existing structure at the northern property boundary.

Photo 4. View north of the ephemeral drainage with evidence of scour, just upstream of the culvert under Viejo Camino.

Dove Creek Self-storage Development Project
Waters and Wetlands Delineation Report
Atascadero, San Luis Obispo County, California
Photo 5. View west of the existing culvert under El Camino Real.

Photo 6. Soil plug excavated at SP-02 during the wetland delineation.
Attachment 3: Cultural Study

This page intentionally left blank
Cultural Resource Study for Newton Development, Atascadero, San Luis Obispo County, California

Philip Clarkson, Amber Long, and Anna Hoover

Prepared By
Applied EarthWorks, Inc.
811 El Capitan Way, Suite 100
San Luis Obispo, CA 93401

Prepared For
Newton Development
215 Santa Fe
Pismo Beach, CA 93449

August 2020
MANAGEMENT SUMMARY

At the request of Newton Development, Applied EarthWorks, Inc. (Æ) completed a cultural resource study at 11450 Viejo Camino, Assessor’s Parcel Numbers 045-342-009 and 045-342-010, in Atascadero, California. The 4.34-acre parcel is considered the project Area of Potential Effects (project APE).

Newton Development is proposing the realignment of an unnamed tributary of Paloma Creek which requires a Section 404 permit from the U.S. Army Corps of Engineers. The project is therefore considered a “federal undertaking” subject to the requirements of Section 106 of the National Historic Preservation Act and its implementing regulations at 36 Code of Federal Regulations 800. It is also subject to compliance review under the California Environmental Quality Act, which mandates that government agencies consider the effects of permitted actions on important archaeological and historical resources (Public Resource Code 5020 and 21000 et. seq. and California Code of Regulations 15000 et. seq.).

Æ’s cultural resource study included a records search of the Central Coast Information Center (CCIC), outreach to the Native American Heritage Commission and local Native American tribal representatives, and a pedestrian surface survey. The research results found a previous Environmental Impact Report that covered the project APE and 10 previous cultural resource studies that have been conducted within a 0.25-mile search radius. No previously recorded cultural resources or historic properties have been mapped within the project APE; however, one previously recorded resource, CA-SLO-1892H; the Dove Cemetery, is approximately 0.25-miles southeast of the project APE.

As part of this study Æ contacted the Native American Heritage Commission and requested a search of their Sacred Lands File, sent letters to local Native American representatives, and followed up via email and phone calls. Fredrick Segobia of the Salinan Tribe of Monterey and San Luis Obispo Counties requested a Native American monitor during construction. Representatives of the Xolon-Salinan Tribe and the yak titʸu titʸu yak tilhini Northern Chumash stated that they would send comments later. No further communication was received.

Æ Staff Archaeologist Philip Clarkson completed a pedestrian survey of the project APE on December 3, 2019. Clarkson examined the ground by walking linear transects spaced no more than 5-meters apart, paying special attention to rodent burrow push piles for evidence of subsurface deposits. Surface visibility varied across the project APE from approximately 75 percent in areas that had been mowed of surface vegetation, approximately 20 percent in areas that had moderately dense seasonal grasses and yellow star thistle, to 0 ground surface visibility in areas with very dense yellow star thistles. Approximately 0.30-acres in the southern-most portion of the project APE was not surveyed due to very dense yellow star thistle preventing access to the area. No cultural resources or historic properties were identified within the project APE during the survey.
As a result of the records search, Native American outreach, and field survey, no historic properties or archaeological resources were identified within the project APE. A single-family residence is in the project APE but is less than 50 years old and not part of the scope of the study. No further studies or actions are recommended. There is always the potential for encountering prehistoric or historic-era materials during ground-disturbing activities. If cultural materials are encountered during ground-disturbing work, it is recommended that all work within 50 feet of the find is halted until a qualified professional archaeologist can evaluate the finds and make further recommendations.

Research materials and information from the current investigation are on file at AE’s office in San Luis Obispo, California. A copy of the final version of this report will be submitted to the CCIC of the California Historic Resources Information System at the University of California, Santa Barbara.
CONTENTS

1 INTRODUCTION..1
 1.1 PURPOSE OF INVESTIGATION..1
 1.2 PERSONNEL QUALIFICATIONS...1
 1.3 REPORT ORGANIZATION..1

2 ENVIRONMENTAL AND CULTURAL CONTEXT ...7
 2.1 NATURAL ENVIRONMENT..7
 2.2 PREHISTORY..7
 2.2.1 Paleo-Indian Period (Pre-10,000 cal B.P.)..8
 2.2.2 Early Archaic Period (10,000-5500 cal B.P.)...8
 2.2.3 Early Period (5500-2600 cal B.P.)..9
 2.2.4 Middle Period (2600-950 cal B.P.)...9
 2.2.5 Middle-Late Transition Period (950-700 cal B.P.)...9
 2.2.6 Late Period (700 cal B.P.-Historic)...10
 2.3 ETHNOGRAPHY..10
 2.4 HISTORY..12

3 METHODS..15
 3.1 RECORDS SEARCH...15
 3.2 NATIVE AMERICAN COMMUNICATION..15
 3.3 ARCHAEOLOGICAL RESOURCES INSPECTION...15

4 FINDINGS...17
 4.1 RECORDS SEARCH RESULTS..17
 4.2 PREVIOUSLY RECORDED RESOURCES...18
 4.3 NATIVE AMERICAN COMMUNICATION..18
 4.4 ARCHAEOLOGICAL INSPECTION..19

5 SUMMARY AND RECOMMENDATIONS..23
 5.1 STUDY RESULTS..23
 5.2 RECOMMENDATIONS..23
 5.2.1 Inadvertent Discoveries..23
 5.2.2 Human Remains..24

6 REFERENCES...25

APPENDICES
 A Records Search
 B Native American Communication
FIGURES

1-1 Project vicinity in San Luis Obispo County, California ...3
1-2 Project Area of Potential Effects on the Atascadero 7.5-minute USGS quadrangle4
1-3 Aerial view of the project Area of Potential Effects ..5

4-1 Project overview, facing south. Residence in right foreground ...20
4-2 Area not surveyed due to dense yellow star thistle, facing south20
4-3 Aerial view of survey coverage ..21

TABLES

2-1 Regional Chronology of the Central Coast ...7

4-1 Previous Cultural Resource Studies within 0.25 mile of the Project APE17
4-2 Native American Communication Results ...18
1 INTRODUCTION

At the request of Newton Development, Applied EarthWorks, Inc. (Æ) completed a cultural resource study at 11450 Viejo Camino, Assessor’s Parcel Numbers (APN) 045-342-009 and 045-342-010 in the city of Atascadero (City), San Luis Obispo County, California (Figure 1-1). The 4.34-acre parcel is between Viejo Camino to the north and El Camino Real to the south, in an unsectioned portion of the Atascadero Rancho within Township 28 South, Range 12 East, as depicted on the U.S. Geological Survey (USGS) Atascadero 7.5-minute topographic quadrangle (Figures 1-2).

1.1 PURPOSE OF INVESTIGATION

Newton Development proposes to realign a portion of an unnamed tributary of Paloma Creek in support of potential future development of the parcel. The tributary is an ephemeral blue-line creek which meets Paloma Creek to the northeast and drains into the Salinas River. The tributary is considered a jurisdictional “waters of the United States” and the proposed realignment of the creek requires a Section 404 permit from the U.S. Army Corps of Engineers (USACE). Due to the requirement for Federal permits, the project is considered a “federal undertaking” and is subject to the requirement of Section 106 of the National Historic Preservation Act (NHPA) and its implementing regulations at 36 Code of Federal Regulations 800. The project will also require permits from the City for any future proposed development and is therefore also subject to the requirements of the California Environmental Quality Act (CEQA). A single-family residence shaped like a geodesic dome is on the parcel but is less than 50 years old and not in the scope of the current study. Although no development is proposed at this time, Æ surveyed the full 4.34-acre parcel to determine whether historic properties and archaeological resources exist within the parcel. The entire parcel is considered the project Area of Potential Effects (APE) (Figure 1-3).

1.2 PERSONNEL QUALIFICATIONS

Æ Principal Archaeologist Erin Enright (M.A., Registered Professional Archaeologist [RPA] 16575) served as principal investigator and provided technical review of this document. Æ Senior Architectural Historian Amber Long (M.A.) served as project manager. Æ Senior Archaeologist Anna Hoover (M.S., RPA 28576661) reviewed and contributed to this report. Æ Staff Archaeologist Philip Clarkson (B.A.) conducted the archaeological field survey, performed a records search at the Native American Heritage Commission’s (NAHC) Sacred Lands File (SLF), communicated with Native American representatives, and authored the report.

1.3 REPORT ORGANIZATION

This report was prepared in accordance with Archaeological Resource Management Reports: Recommended Contents and Format published by the California Office of Historic Preservation (Office of Historic Preservation 1990). This document consists of six chapters. Following this
introduction, Chapter 2 describes the environmental and cultural setting of the project APE. Chapter 3 presents AE’s methods for the study, including background research and field investigations. Results of the research and archaeological investigations are discussed in Chapter 4, while Chapter 5 contains a summary and recommendations. A complete listing of references cited is provided in Chapter 6. Appendix A presents the results of the records search and Appendix B contains the documentation of communication with the Native American Heritage Commission and local tribal representatives.
Figure 1-1 Project vicinity in San Luis Obispo County, California.
Figure 1-2 Project Area of Potential Effects on the Atascadero 7.5-minute USGS quadrangle.
Figure 1-3 Aerial view of the project Area of Potential Effects.

Cultural Resource Study for Newton Development
ENVIRONMENTAL AND CULTURAL CONTEXT

2.1 NATURAL ENVIRONMENT

The project APE lies inland in San Luis Obispo County, in the southern extent of the Coast Ranges geologic province. The Coast Ranges were formed by pressure between the North American and Pacific plates, which folded the North American Plate into a series of northwest-southeast trending ridges and valleys and raised the coastline (Pletka and Pletka 2004). Geology of the area includes Quaternary alluvium as well as lake, playa, and terrace deposits (California Geological Survey 2015). Soils in the project APE are of the Arbuckle-Positas Complex and are characterized as very deep, well drained soils, often on terraces, formed from sedimentary and metamorphic rocks. Rock fragments are predominately quartz and chert. Slopes range from 0 to 75 percent.

The project APE is in Atascadero in northern San Luis Obispo County, and includes one residential lot and one vacant lot with a documented wetland. Local vegetation traditionally consists of riparian vegetation and oak woodlands. The local Mediterranean climate is typically warm and dry in the summer, and cool and wet in the winter. Most of the area’s rivers, creeks, and streams remain dry during the summer months. Average inland temperatures range from 37 to 88 degrees Fahrenheit with July and August averaging the warmest months and December the coldest. Winter rain, occurring between November and March, is the largest contributor to the regions water table. February is usually the wettest month. Mean annual precipitation near the project APE is 19 inches (BestPlaces 2019).

2.2 PREHISTORY

Early attempts at regional cultural chronology by Rogers (1929) and Olson (1930) divided prehistory into three periods. However, extensive archaeological studies since then and development of more precise dating methods have allowed many refinements to the San Luis Obispo cultural sequences. Currently, the most common chronological system—based on work by Erlandson and Colten (1991), Jones and Ferneau (2002), Jones et al. (2007), King (1990), and Jones et al. (2015)—divides Central Coast prehistory into six periods (Table 2-1).

<table>
<thead>
<tr>
<th>Period</th>
<th>Years B.C./A.D.</th>
<th>Calibrated Years B.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleo-Indian</td>
<td>pre-8000 B.C.</td>
<td>pre-10,000</td>
</tr>
<tr>
<td>Early Archaic</td>
<td>8000–3500 B.C.</td>
<td>10,000–5500 B.P.</td>
</tr>
<tr>
<td>Early</td>
<td>3500–600 B.C.</td>
<td>5500–2600 B.P.</td>
</tr>
<tr>
<td>Middle</td>
<td>600 B.C.–A.D. 1000</td>
<td>2600–950 B.P.</td>
</tr>
<tr>
<td>Middle-Late Transition</td>
<td>A.D. 1000–1250</td>
<td>950–700 B.P.</td>
</tr>
<tr>
<td>Late</td>
<td>A.D. 1250–1769</td>
<td>700 B.P.–Historic</td>
</tr>
</tbody>
</table>
2.2.1 Paleo-Indian Period (Pre-10,000 cal B.P.)

The Paleo-Indian Period represents the earliest human occupations in the region, which began prior to 10,000 years ago. Paleo-Indian sites throughout North America are known by the representative fluted projectile points, crescents, and large bifaces used as tools as well as flake cores and a distinctive assemblage of small flake tools. Only three fluted points have been reported from Santa Barbara and San Luis Obispo counties, and all are isolated occurrences unassociated with larger assemblages of tools or debris (Erlandson et al. 1987; Gibson 1996; Mills et al. 2005). More evidence of Paleo-Indian sites on the mainland is slowly being discovered, however, and recent work on Vandenberg Air Force Base (AFB) uncovered a late Paleo-Indian site (CA-SBA-1547) with a robust artifact assemblage (Lebow et al. 2015). Data recovery work at this location has documented a dense single-component shell midden dating to approximately 10,725 calibrated years before present (cal B.P). Data from this site, also known as the Sudden Flats Site, point to an early culture that utilized a unique tool assemblage exhibiting traits derived from Alaska/Beringia (Lebow et al. 2015).

Interestingly, early sites on San Miguel and Santa Rosa islands have yielded numerous radiocarbon dates of older Paleo-Indian age than the Sudden Flats Site. Additionally, these sites do not contain fluted points or other notable artifacts typically associated with Paleo-Indian adaptations (Agenbroad et al. 2005; Erlandson et al. 1996). Nonetheless, both offshore and mainland sites provide clear evidence of watercraft use by California’s earliest colonizers, offering tantalizing evidence of pre-Clovis occupations. Overall, inhabitants of the Central Coast during the Paleo-Indian Period are thought to have lived in small groups with a relatively egalitarian social organization and a forager-type land-use strategy (Erlandson 1994; Glassow 1996; Greenwood 1972; Moratto 1984).

2.2.2 Early Archaic Period (10,000-5500 cal B.P.)

Additional evidence of human occupation has been found at sites dating to the Early Archaic. A growing number of Early Archaic components have been identified, most located in coastal or pericoastal settings. Two such components, at CA-SLO-2 (Diablo Canyon) and CA-SLO-1797 (the Cross Creek Site), are radiocarbon dated between 10,300 and 8500 cal B.P., providing the earliest evidence for the widespread California Milling Stone adaptive pattern (Greenwood 1972; Jones et al. 2008). The most common artifacts in these assemblages are the eponymous milling slabs and handstones used to grind hard seeds and process other foodstuffs. Choppers, core tools, and large bifaces also are common, while side-notched dart points, pitted stones, simple bone awls, bipointed bone gorges, and possible eccentric crescents occur in lesser frequencies. Population density likely remained low, although settlements may have been semipermanent. Subsistence activities appeared to be aimed broadly at a diverse spectrum of terrestrial and marine resources.

During this time, people appear to have subsisted largely on plants, shellfish, and some vertebrate species using a seemingly simple and limited tool technology. Sites of this age are notable for the prevalence of handstones and milling slabs and less abundant flaked tools and projectile points (Jones et al. 2007). Archaeological components from central California show substantial regional variability. Differences in site location, artifact assemblages, and faunal remains suggest that populations were beginning to establish settlements tethered to the unique
characteristics of the local environment and adopt subsistence practices responsive to local conditions. Obsidian from several of these components originated on the east side of the Sierra Nevada, suggesting that long-distance trade networks were also established during this era. Glassow (1990, 1996) infers that occupants of sites in the Vandenberg area during this time were sedentary and had begun using a collector-type (i.e., logistically mobile) land-use strategy; however, others have argued for a broader and less permanent subsistence base as overexploitation of coastal resources pushed human residents towards the interior (Jones and Richman 1995).

2.2.3 Early Period (5500-2600 cal B.P.)

An important adaptive transition occurred along the Central Coast around 5500 cal B.P. (Jones et al. 2007; Price et al. 2012). Technological changes marking the transition into the Early Period include an abundance of contracting-stemmed, Rossi square-stemmed, large side-notched, and other large projectile points (Jones et al. 2007:138). Mortars and pestles were introduced and gradually replaced manos and milling slabs as the primary plant processing tools, indicating expansion of the subsistence base to include acorns (Glassow and Wilcoxon 1988). Shell beads and obsidian materials indicate that trade between regions expanded (Jones et al. 1994). Site occupants appear more settled with more limited mobility, and they increasingly used sites for resource procurement activities such as hunting, fishing, and plant material processing (Jones et al. 1994:62; Jones and Waugh 1995:132). Farquhar et al. (2011:14) argue that cultural changes during this period are the result of population circumscription and economic intensification. Echoing Rogers (1929), Price et al. (2012:36–37) suggest such constraints might have been prompted by the arrival of new populations or adoption of new social norms in the region.

2.2.4 Middle Period (2600-950 cal B.P.)

The Middle Period is defined by continued specialization in resource exploitation and increased technological complexity. Contracting-stemmed points still existed, while square-stemmed and large side-notched variants disappeared (Rogers 1929). The use of mortars and pestles also increased. Additionally, expansion of trade is evident in the increased quantity of obsidian, beads, and sea otter bones (Farquhar et al. 2011:15). Circular shell fishhooks, which facilitated an increase in exploitation of fishes, appeared for the first time (Glassow and Wilcoxon 1988). The appearance of small leaf-shaped projectile points toward the end of the period is evidence for the arrival of bow and arrow technology (Jones et al. 2007:139).

2.2.5 Middle-Late Transition Period (950-700 cal B.P.)

The Middle-Late Transitional Period represents a rapid change in artifact assemblages as large numbers of arrow points appeared and most stemmed points disappeared (Jones et al. 2007:139). Hopper mortars also made their first entry in the archaeological record (Farquhar et al. 2011:16). At the same time, some evidence points to population decline and interregional trade collapse. Obsidian is not found in sites dating to this period (Jones et al. 1994). Settlement shifted away from the coast and people relocated to more interior settings (Jones 1995:215). Marine resources appear to have been largely dropped from the diet, and instead people relied more on terrestrial resources such as small mammals and acorns (Farquhar et al. 2011:16). These changes may have been caused by an environmental shift that increased sea and air temperatures, resulting in

At the same time, it appears that social complexity became more noticeable during the transition between the Middle and Late periods. It is during this time that craft specialization and social ranking developed (Arnold 1992). The *tomol* (plank canoe), which was utilized by the Chumash south of Point Conception where ocean conditions were more favorable, allowed for a greater reliance on marine resources, particularly fish, for food. However, these changes are again more noticeable south of Point Conception, and may have been due, in part, to environmental changes occurring at that time.

2.2.6 Late Period (700 cal B.P.-Historic)

Populations on the Central Coast expanded in the Late Period (Farquhar et al. 2011:17; Glassow 1996). More sites were occupied during this period than ever before (Jones et al. 2007:143). It appears that the inhabitants of the Central Coast used a range of subsistence strategies depending on the available local ecology. Some studies have found that Late Period residents did not increase maritime subsistence activities but instead continued to demonstrate a terrestrial focus with occasional forays to the coastal zone to procure marine products (Farquhar et al. 2011:17; Jones et al. 2007:140; Price 2005; Price et al. 1997:4.13–14.14). However, archaeological investigations at Late Period coastal sites along the Central Coast show evidence of intensification of marine resource use and overall expansion of the subsistence base (Codding et al. 2013; Enright 2010; Joslin 2010; Moratto et al. 2009). Analysis of assemblages from two Late Period sites on the San Simeon Reef (Joslin 2010) and excavations at Tom’s Pond (CA-SLO-1366/H) on the Pecho Coast (Codding et al. 2013) demonstrate that some human populations responded to climate shifts and associated impacts to terrestrial faunal communities with an increased use of the marine subsistence base. This same trend is visible to the south, along the Vandenberg AFB coast where analysis of faunal assemblages from CA-SBA-694 and -695 found that Late Period inhabitants used coastal sites as camps for exploitation of marine resources, especially shellfish and fish (Enright 2010; Moratto et al. 2009).

Artifact assemblages from the Late Period within San Luis Obispo County contain an abundance of arrow points, small bead drills, bedrock mortars, hopper mortars, and a variety of bead types (Price 2005). More shell and stone beads appeared in the Late Period and became a more standardized and common form of exchange (Jones et al. 2007:140, 145). The use of handstones and milling slabs continued during this period, but pestles and mortars occurred in greater proportions (Jones and Waugh 1995:121). There are few records of Spanish encounters with the Chumash north of Point Conception (Glassow 1990). However, in San Luis Obispo County it appears that the absence of the *tomol* and a lower population density contributed to a different social and political organization than their neighbors to the south. Moreover, the absence of imported obsidian after 900 cal B.P. suggests a change in trade relationships that is likely associated with the shift in settlement patterns (Jones et al. 1994).

2.3 ETHNOGRAPHY

The project APE is within the traditional territorial ranges of both the Salinan and Chumash people (Hester 1978; Jones et al. 2007). A hunting and gathering people, the Salinans were
separated into northern and southern groups. Northern Salinans, or Antoniaños, were associated with the populations around Mission San Antonio de Padua. The southern group, or Migueleños, were associated with the populations around Mission San Miguel Archángel. The territories of both Salinan groups extended east into the interior of the Coast Range, where they met Chumash and Yokuts territory. The Salinan language is a classificatory isolate of the Hokan linguistic group (Golla 2011:114).

The Northern Chumash occupied land along the Pacific coast from the Santa Maria River north to approximately Point Estero and east to the edge of the San Joaquin Valley. The Chumash people lived in large villages along the Santa Barbara Channel coast, with less dense populations in the interior regions, on the Channel Islands, and in coastal areas north of Point Conception. Both Salinan and Northern Chumash subsistence was focused on fishing, hunting, and gathering native plants, particularly acorns, although many animals and dozens of plants were used for food (Hester 1978:501). Marine shellfish was an important source of nourishment, and both men and women shared in the task of gathering (Greengo 1952). Fishing also had a division of labor along gender lines. Men would weave the fishing nets and catch the fish, while women would process the catch. A variety of mammals were hunted, including bear, rabbit, and deer. The meat was roasted, baked, boiled, or dried. Cooking baskets and earth ovens were used in food preparation.

Vegetal foods, especially acorns, provided the bulk of the diet. Acorns were stored in large willow-twig granaries until needed, then ground with a stone mortar and pestle. The tannic acid in the acorn meal was leached out with water, and the result was cooked into a gruel. Other important plant foods included wild grass and sage seeds, berries, mescal, and wild fruits and berries. Animals and birds were captured with snares, traps, spears, and the bow and arrow.

Stone, bone, wood, and shell provided materials for tool production (Hester 1978:501). Stone tools were manufactured from locally available chert as well as imported obsidian, and debris from their manufacture and maintenance are most likely to be seen in an archaeological context. Pecked and ground stone objects include bowl mortars, pestles, metates, basket mortars, stone bowls, notched pebble net sinkers, and steatite arrow shaft straighteners. Ornaments are made of steatite and serpentine. Bone and shell tools were also manufactured, especially bone awls and C-shaped fishhooks. Shell beads of olive snail, mussel, abalone, and other species were the basis of the native “currency,” with value being assigned based on the color of the shell and other factors (Hester 1978:502).

The Salinan and Chumash people were on good terms with the Yokuts to the east, especially those residing on the shore of Tulare Lake. They would regularly travel inland to fish and hunt fowl, and the Yokuts, in kind, would venture westward to obtain littoral resources. Trade was extensive; the Yokuts received shell beads, unworked shells, and other marine resources, while the Chumash and Salinans received saltgrass salt, obsidian, seeds, lake fish, and tanned antelope and deer skins (Baldwin 1971). The Salinans obtained univalve shell ornaments, wooden dishes, and steatite vessels from the Chumash (Hester 1978:500).
2.4 HISTORY

The first Europeans the Chumash encountered were Spanish explorers in the sixteenth century. In 1587, Pedro de Unamuno landed his ship in Morro Bay and explored inland to San Luis Obispo. The Gaspar de Portolá expedition likely passed through Oceano in 1769, and Juan Bautista de Anza followed practically the same route as Portolá in 1774 and 1776 (Hoover et al. 1990:359).

Mission San Luis Obispo de Tolosa was founded in 1772 by Padre Junipero Serra. The site was selected for its level lands and “two little arroyos which contained water with sufficient lands that with little trouble . . . could be irrigated from them” (Palóu 1926). Father Joseph Caveller quickly constructed a small wooden chapel that also served as a shelter. In 1774, a more permanent church with adobe foundations and a superstructure of shaved limbs and tules was erected. In 1776, Northern Chumash damaged the mission buildings by shooting burning arrows into the roofs thatched with tule (Hoover et al. 1990:360). An adobe church replaced the original chapel in 1794. The native population declined rapidly. In 1803 there was a peak of 919 Native Americans residing at the mission, but by 1838 the population had declined to 170. According to the Roll of 1928 compiled by the Bureau of Indian Affairs, only four Native Americans living at the time claimed to be survivors of San Luis Obispo Mission Indians (Greenwood 1978:521).

Mission San Antonio de Padua was founded in 1771, Mission San Luis Obispo de Tolosa in 1772, and Mission San Miguel Archangel in 1797. In the 1790s, an auxiliary rancho with more than 17,000 acres of prime farmland was established at Santa Margarita (Krieger 1988). Mission San Miguel was founded by Father Fermin Francisco de Lasuen. Mission lands extended north near San Ardo, east to Corcoran, south to Atascadero, and west to the coast (Ohles 1997). Together the missions produced an impressive quantity and variety of goods. In 1805, 19 missions held a quarter-million head of livestock, including 130,000 sheep, 95,000 cattle, 21,000 horses, 1,000 mules, 800 pigs, and 120 goats (Hackel 1998:116). Productivity increased into the late 1810s and 1820s when the numbers reached their peak levels for most missions (Engelhardt 1915:531). The most important commercial commodity was cattle. Hides and tallow were exported to merchant ships that came to call along the California coast during the first part of the 1800s. Along with livestock, the missions produced over 4 million bushels of wheat, corn, barley, beans, peas, lentils, and chick-peas in the period between 1783–1832 (Engelhardt 1915:535).

California became a Mexican territory in 1822. Unlike their Spanish predecessors, the Mexican authorities opened California to foreign trade and immigration. The beneficiaries of this policy were predominantly the missions, which could legally expand their hide and tallow trade to foreign merchants (Hackel 1998). The Colonization Act of 1824 and the Supplemental Regulations of 1828 afforded private individuals—both Mexican nationals and immigrants—the right to obtain title to land, although at that time mission lands were not available. Such immigrant-friendly laws directly contributed to the migration and eventual permanent presence of Anglo-Americans in California. The Secularization Act of 1833 officially ended the church’s monopoly on prime California lands and redistributed the mission estates to private individuals in the form of land grants. During the early and mid-1840s, the former mission lands of the county were carved up into large ranchos, each totaling several thousand acres (Krieger 1988:41-43). Some of the recipients of these Mexican land grants were Yankee sea captains, including
William Dana and John Wilson, who had established themselves in the San Luis Obispo area in the previous decades.

After the missions was secularized in 1835, mission lands were divided into land grants and influential families were given the largest grants (Morrison and Haydon 1917:35). The Bear Flag Revolt, which occurred in 1846, resulted in California’s independence from Mexico and control of the territory soon fell into the hands of the United States (Krieger 1988). Rancho owners soon discovered the need to defend their title in U.S. courts, a process that would last over a decade for some petitioners, pushing many into financial hardship.

When California achieved statehood in 1850, immigrants were mainly interested in the riches to be found in the gold fields of the Sierra Nevada. Newcomers were able to find some semblance of the culture they left behind in the northern part of the state and the San Francisco Bay area, but Southern California was seen as a wild, untamed country full of lawlessness. As a result, the population of newly formed San Luis Obispo County grew slowly. The 1850 census listed 336 residents, but ethnicity was not recorded. However, over 230 were born in California, suggesting Native American and/or Mexican heritage. Of the remainder, 55 were born in Mexico, 20 were born in America, and 26 were European immigrants. The population of the County would remain relatively unchanged throughout the 1850s when Henry Miller observed 150 houses in the area inhabited primarily by Native Americans and Mexicans (Miller 1985).

The project APE is within a portion of the 39,225-acre Rancho Asuncion, which was associated with Mission San Miguel and was granted to Pedro Estrada in 1845 by Mexican Governor Pio Pico (Hoover et al. 1990). In 1851 the area was settled by Juan Araujo who founded the town of Dove. The town consisted of a train stop, general store, telephone store, schoolhouse, post office and cemetery. The area of Dove was included in the Atascadero Rancho that was purchased by E.G. Lewis in 1913 and eventually faded away as the city of Atascadero was developed (Allan 2019).

E.G. Lewis envisioned a utopian society called the Atascadero Colony. As part of his vision he laid out vast orchards, established irrigation systems, subdivided large residential parcels and built Highway 41 West. Atascadero became the seventh incorporated city in San Luis Obispo County in 1979, when it was the second largest community in the county (Atascadero Historical Society 2019). Today Atascadero is the third largest city in the county with approximately 28,000 residents (City of Atascadero 2011).
3 METHODS

Æ carried out several tasks to complete this study including a records search, a search of the NAHC’s SLF, and an archaeological pedestrian survey of the project APE. Methods for each task is described below.

3.1 RECORDS SEARCH

On December 11, 2019, a records search was conducted by the Central Coast Information Center (CCIC) of the California Historical Resources Information System (CHRIS), housed at the University of California, Santa Barbara. Through an examination of maps, site records, and archaeological reports, the records search identified previous archaeological surveys conducted and cultural resources recorded within a 0.25-mile search radius of the project APE. The State Historic Property Data Files, National Register of Historic Places, National Register of Determined Eligible Properties, California Points of Historic Interest, California Office of Historic Preservation Archaeological Determinations of Eligibility, and Æ’s in-house files were reviewed (Appendix A).

3.2 NATIVE AMERICAN COMMUNICATION

Æ contacted the NAHC to determine whether any sites recorded in their SLF were in or near the project APE. On December 5, 2019, the NAHC supplied a list of Native American individuals and/or groups who have expressed interest in and knowledge about the area (Appendix B). Those included on the list were contacted by letter and telephone to request comments or information about the project APE (see Section 4.3).

3.3 ARCHAEOLOGICAL RESOURCES INSPECTION

Æ Staff Archaeologist Philip Clarkson completed a pedestrian survey of the project APE on December 3, 2019. Clarkson examined the ground by walking linear transects spaced no more than 5-meters apart, paying special attention to rodent burrow push piles for evidence of subsurface deposits. Disturbances were documented in the field with a survey area sketch, and digital photographs were taken with an iPhone 8, 12-megapixel camera.
4

FINDINGS

4.1 RECORDS SEARCH RESULTS

The CCIC records search found one previous Environmental Impact Report (EIR: Quad Knopf 1999) that included the project APE; however, no cultural resource studies were completed as part of the EIR. One previous cultural resource study (Gibson 2000) included the southwestern boundary of the project APE. No previously recorded resources are within the project APE. Ten previous cultural resource studies and 1 resource are recorded within the 0.25-mile search radius of the project APE (Appendix A). The studies and EIR are listed in Table 4-1, and in Appendix A.

<table>
<thead>
<tr>
<th>Report No.</th>
<th>Date</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL-00133</td>
<td>1977</td>
<td>Dills, C.</td>
<td>Archaeological Potential of Proposed Property on San Diego Road,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atascadero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>House Property in Atascadero, San Luis Obispo County, California</td>
</tr>
<tr>
<td>SL-01523</td>
<td>1989</td>
<td>Dills, C.</td>
<td>Archaeological Potential of La Paloma Estates, Atascadero</td>
</tr>
<tr>
<td>SL-03464</td>
<td>1998</td>
<td>Singer, C.</td>
<td>Cultural Resources Survey of a 69-acre Property Adjacent to Paloma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Creek near the City of Atascadero, San Luis Obispo, California</td>
</tr>
<tr>
<td>SL-03645</td>
<td>1999</td>
<td>Quad Knopf Inc.</td>
<td>Environmental Impact Report for a Proposed Atascadero,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Redevelopment Plan</td>
</tr>
<tr>
<td>SL-04374</td>
<td>2000</td>
<td>Gibson, R.</td>
<td>Results of Phase One Archaeological Surface Survey for the El Camino</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bike Lanes Project, Phase 1 and 3, Atascadero, California</td>
</tr>
<tr>
<td>SL-04598</td>
<td>2002</td>
<td>Wilson, K.</td>
<td>Cultural Resources Review, Side Gutter Installation Project on State</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Route 101</td>
</tr>
<tr>
<td>SL-06295</td>
<td>2008</td>
<td>Sewell, K. and</td>
<td>The Excavation and Interpretation of Dove Cemetery, CA-SLO-1892H,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stanton, P.</td>
<td>San Luis Obispo County, California</td>
</tr>
<tr>
<td>SL-06509</td>
<td>2009</td>
<td>Kiaha, K. and</td>
<td>Historic Property Survey Report-Atascadero Highway 101 Rehabilitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MacDonald, C.</td>
<td>Project and attachments</td>
</tr>
<tr>
<td>SL-06892</td>
<td>2014</td>
<td>Hudlow, S.</td>
<td>A Phase 1 Cultural Resource Survey for Atascadero Family Apartments,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>City of Atascadero, California</td>
</tr>
<tr>
<td>SL-07064</td>
<td>2014</td>
<td>Laurie, L.</td>
<td>Results of the Supplemental Phase 1 Archaeological Survey for Six</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Additional Parcels at the Conscious Building Groves at Atascadero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Development in Atascadero, San Luis Obispo County, California (SWCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>#30137)</td>
</tr>
</tbody>
</table>

Quad Knopf Inc. (1999) prepared an EIR in support of a redevelopment plan for the City that included the entire project APE; however, the EIR did not include a cultural resource study. Gibson (2000) conducted a Phase 1 survey for a proposed bike lane on El Camino Real, that included the southwest boundary of the project APE. The following studies covered areas immediately adjacent to the project APE. Singer (1985) conducted a Phase 1 survey at the Bordeaux House property across Viejo Camino to the north. Dills (1989) conducted a Phase 1
survey of La Paloma Estates, northeast and immediately adjacent to Singer’s survey. Singer (1998) conducted a Phase 1 survey of 69-acres adjacent to Paloma Creek, across El Camino Real, southwest of the project APE. Sewell and Stanton (2008) conducted excavations at CA-SLO-1892H, Dove Cemetery, 0.25-miles southeast of the project APE.

4.2 PREVIOUSLY RECORDED RESOURCES

There are no previously recorded cultural sites or historic properties within the project APE; however, one previously recorded site, CA-SLO-1892H, is 0.25-mile southeast of the project APE. CA-SLO-1892H is a small cemetery associated with the historic community of Dove that predates the founding of the Atascadero Colony. The site includes two broken headstones (Singer 1998).

4.3 NATIVE AMERICAN COMMUNICATION

The NAHC responded to Æ’s information request on December 5, 2019 noting that its search of the SLF for resources with proximity of the project APE was positive. The NAHC provided a contact list of interested Native American individuals and groups and suggested Æ contact them for additional information. Specifically, the NAHC indicated that the yak titʸu titʸu yak tilhini (YTT), Northern Chumash, may have specific information about cultural resources in the area. Æ sent notification letters on December 5, 2019 to individuals on the NAHC list informing them of the nature and intent of the project and soliciting comments or concerns (Appendix B).

Follow-up phones calls were initiated on December 18, 2019. Follow-up emails were sent when phone numbers were not provided. Table 4-2 identifies each individual or group contacted and provides responses to the request for information (Appendix B).

<table>
<thead>
<tr>
<th>Name</th>
<th>Tribe/Group</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred Collins</td>
<td>Northern Chumash Tribal Council</td>
<td>Notification letter sent December 5, 2019. Voice mail left December 18, 2019.</td>
</tr>
</tbody>
</table>
Table 4-2 (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Tribe/Group</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Vigil</td>
<td>San Luis Obispo County Chumash Council</td>
<td>Notification letter sent December 5, 2019. Called December 18, 2019, phone disconnected. No email address was provided.</td>
</tr>
<tr>
<td>Kenneth Kahn</td>
<td>Santa Ynez Band of Mission Indians</td>
<td>Notification letter sent December 5, 2019. Voice message left December 18, 2019. Email requesting no further consultation at this time received December 27, 2019.</td>
</tr>
<tr>
<td>Karen White</td>
<td>Xolon-Salinan Tribe</td>
<td>Notification letter sent December 5, 2019. Phone conversation December 16, 2019. White had not had time to review and would respond later. No further comment was received.</td>
</tr>
<tr>
<td>Donna Haro</td>
<td>Xolon-Salinan Tribe</td>
<td>Notification letter sent December 5, 2019. No concerns were stated during phone conversation December 18, 2019.</td>
</tr>
<tr>
<td>Mona Tucker</td>
<td>yak titu titu yak tilhini, Northern Chumash</td>
<td>Notification letter sent December 5, 2019. Lorie Laguna, on Ms. Tucker's behalf December 12, 2019, requested more information and indicated a response later. No further comment was received.</td>
</tr>
</tbody>
</table>

As a result of the Native American outreach process, Fredrick Segobia of the Salinan Tribe of Monterey and San Luis Obispo Counties requested a Native American monitor during construction. Karen White of the Xolon-Salinan Tribe and Lorie Laguna, on behalf of Mona Tucker from the YTT, stated they would send comments later. No additional comments were received.

4.4 ARCHAEOLOGICAL INSPECTION

On December 3, 2019, AE Staff Archaeologist Philip Clarkson conducted a pedestrian survey of the 4.34-acre project APE (Figure 4-1). Topographically, the northern portion of the parcel contains a slight rise, gently sloping southward to the tributary, dry at the time of survey, and an alluvial plain. Surface visibility varied across the project APE from approximately 75 percent in areas that had been mowed of surface vegetation, approximately 20 percent in areas that had moderately dense seasonal grasses and yellow star thistle, to 0 ground surface visibility in areas with very dense yellow star thistles (Figure 4-2). Approximately 0.30-acres in the southern-most portion of the project APE was not surveyed due to very dense yellow star thistle preventing access to the area (Figure 4-3). The single-family residence was observed in the field but assessment of the residence was not within the scope of the study. No cultural resources or historic properties were identified within the project APE during the survey.
Figure 4-1 Project overview, facing south. Residence in right foreground.

Figure 4-2 Area not surveyed due to dense yellow star thistle, facing south.
Figure 4-3 Aerial view of survey coverage.
5
SUMMARY AND RECOMMENDATIONS

Æ completed a cultural resource study at 1145 Viejo Camino (APNs 045-342-009 and 045-342-010) in the city of Atascadero, California. Newton Development is proposing realignment of an unnamed tributary of Paloma Creek that requires a Section 404 permit from the USACE and CEQA approvals from the City for future development. No specific development has been identified at this time.

5.1 STUDY RESULTS

Æ’s study included defining the project APE, a records search of the CCIC and the SLF of the NAHC, outreach to local Native American tribal representatives, and a pedestrian surface survey of the project APE. Record search results indicate that an EIR was prepared that included the entirety of project APE; however, no cultural resource study was completed as part of the EIR. One previous cultural resource study included the southwest boundary of the project APE. No previously recorded cultural resources or historic properties are mapped within the project APE; however, one previously recorded resource, CA-SLO-1892H; the Dove Cemetery, is approximately 0.25-miles south of the project APE. Ten cultural resource studies were previously conducted within the 0.25-mile search radius.

Tribal representatives listed on the NAHC contact list were sent letters and contacted separately via telephone or email. Fredrick Segobia of the Salinan Tribe of Monterey, San Luis Obispo Counties requested a Native American monitor during construction. Representatives of the Xolon-Salinan Tribe and the YTT stated they would send comments later, but no further comments were received.

Æ conducted an intensive pedestrian survey of all accessible areas of the 4.34-acre project APE. Surface visibility varied across the project APE from 75 percent in areas that had been recently mowed to 0 percent visibility in areas with very dense yellow star thistle which prevented access to approximately 0.30-acres. No cultural resources or historic properties were observed or recorded during the pedestrian survey.

5.2 RECOMMENDATIONS

As a result of the records search, document review, Native American outreach, and field survey, no historic properties or archaeological resources were identified within the project APE. No further cultural resource studies or actions are recommended at this time.

5.2.1 Inadvertent Discoveries

Due to limited ground visibility in some portions of the parcel, there is potential for encountering prehistoric or historic-era materials not identified during the current study. Prehistoric materials may include but are not limited to chert flaked stone tools (e.g., projectile points, knives, scrapers) or toolmaking debris; culturally darkened soil (midden) containing fire-altered rocks, artifacts, or shellfish remains; and stone milling equipment (e.g., mortars, pestles, handstones).
Historic-era materials might include stone, concrete, wood or adobe building foundations, corrals, and walls; filled wells or privies; mining features; and deposits of metal, glass, and/or ceramic refuse. If any of these materials are found during construction, ground-disturbing activities should be halted within 50 feet of the find, and a qualified archaeologist should be contacted to determine if the materials are isolated finds or part of a larger archaeological deposit. If a cultural resource or historic property is identified, then the resource should be evaluated for significance under the NHPA and CEQA and further treatment measures may be required.

5.2.2 Human Remains

If human remains are discovered during project construction, work must stop at the discovery location and any nearby area suspected to contain human remains (PRC 7050.5). The San Luis Obispo Coroner must be contacted to determine whether the cause of death should be investigated. If the coroner determines that the remains are of Native American origin, it is necessary to comply with state laws relating to the disposition of Native American burials, which fall within the jurisdiction of the NAHC (PRC 5097). The coroner will contact the NAHC. The NAHC will contact the most likely descendant(s) who will be afforded the opportunity to recommend means for treatment of the human remains following protocols in PRC 5097.98.
REFERENCES

Agenbroad, Larry D., John R. Johnson, Don Morris, and Thomas W. Stafford, Jr.

Allan, Lon

Arnold, Jeanne E.

Atascadero Historical Society

Baldwin, Mary A.
1971 Culture Continuity from Chumash to Salinan Indians in California Master’s thesis, Department of Anthropology, San Diego State University, California.

BestPlaces

California Geological Survey

City of Atascadero

Cоддинг, Брайан Ф., Терри Л. Джонс, Розанна С. Бахтийар, Саманта Лей, Юдит Ф. Поркаси, и Кен Гобалет
Dills, Charles E.
1989 *Archaeological Potential of La Paloma Estates, Atascadero.* On file, California Historical Resources Information System, Central Coast Information Center, University of California, Santa Barbara.

Engelhardt, Zephyrin

Enright, Erin A.

Erlandson, Jon M.

Erlandson, Jon M., and Roger H. Colten (editors)

Erlandson, Jon M., Theodore G. Cooley, and Richard Carrico

Erlandson, Jon M., Douglas J. Kennett, Lynn Ingram, Daniel A. Guthrie, Don P. Morris, Mark A. Tveskov, G. James West, and Phillip L. Walker

Farquhar, Jennifer, Ryan Brady, Tom Garlinghouse, and John Ellison
2011 *Archaeological Investigations for the Nacimiento Water Project, San Luis Obispo County, California.* Submitted to Albion Environmental Inc., Santa Cruz, California.

Gibson, Robert O.
1996 *Results of Archaeological Monitoring for Unocal Soil Testing Program along Pipelines near Santa Margarita, San Luis Obispo County, California.* Submitted to Gibson’s Archaeological Consulting, Paso Robles, California.

2000 *Results of Phase One Archaeological Surface Survey for the El Camino Bike Lanes Project, Phase 1 and 3, Atascadero, California.* Submitted to Gibson's Archaeological Consulting.

Glassow, Michael A.
1990 *Archaeological Investigations on Vandenberg Air Force Base in Connection with the Development of Space Transportation System Facilities.* Submitted to Department of Anthropology, University of California, Santa Barbara.
Glassow, Michael A., and Larry R. Wilcoxon

Golla, Victor

Graumlich, Lisa J.

Greengo, Robert E.

Greenwood, Roberta S.

Hackel, Steven W.

Hester, Thomas R.

Hoover, Mildred Brooke, Hero Eugene Rensch, Ethel Grace Rensch, and William N. Abeloe

Jones, Deborah, Terry Jones, William Hildebrandt, Patricia Mikkelsen, and Kacey Hadick
2015 *Archaeological Investigations for the Los Osos Wastewater Project, San Luis Obispo County, California*. Submitted to Far Western Archaeological Research Group, Inc., Davis, California.
Jones, Terry L.

Jones, Terry L., Kathleen Davis, Glenn Farris, Steven D. Grantham, Teresa W. Fung, and Betty Rivers
1994 Toward a Prehistory of Morro Bay: Phase II Archaeological Investigations for the Highway 41 Widening Project, San Luis Obispo County, California. Submitted to California Department of Transportation, Environmental Branch, San Luis Obispo.

Jones, Terry L., and Jennifer A. Ferneau

Jones, Terry L., Richard T. Fitzgerald, and Judith F. Porcasi

Jones, Terry L., and Jennifer R. Richman

Jones, Terry L., Nathan E. Stevens, Deborah A. Jones, Richard T. Fitzgerald, and Mark G. Hylkema

Jones, Terry L., and Georgie Waugh (editors)

Joslin, Terry, L.
2010 Middle and Late Holocene Hunter-Gatherer Adaptations to Coastal Ecosystems along the Southern San Simeon Reef, California. Ph.D. dissertation, University of California, Santa Barbara.

Kennett, Douglas J., B. Lynn Ingram, Jon M. Erlandson, and Phillip Walker
King, Chester D.

Krieger, Daniel E.

Lebow, Clayton G., Douglas R. Harro, Rebecca L. McKim, Charles M. Hodges, Ann M. Munns, Erin A. Enright, and Leeann G. Haslouer

Miller, Henry

Mills, William, Michael Rondeau, and Terry L. Jones

Moratto, Michael J.

Morrison, Annie L., and John H. Haydon
1917 *History of San Luis Obispo County and Environs, California: with Biographical Sketches of the Leading Men and Women of the County and Environs Who Have Been Identified with the Growth and Development of the Section from the Early Days to the Present.* Historic Record Company, Los Angeles, California.

Office of Historic Preservation

Ohles, Wallace V.
Olson, Ronald L.

Palóu, Francisco

Pisias, Nicklas G.

Pletka, Scott, and Nicole Pletka
2004 *Proposal for CRHP Extended Phase I Survey and Phase II Test Excavations, Willow Road Extension Project, Community of Nipomo, County of San Luis Obispo, California.* Submitted to LSA Associates, San Luis Obispo, California.

Price, Barry A.
2005 Fashionably Late: Chronological and Cultural Definitions of the Late Period on the Central California Coast. Paper presented at the 39th Annual Meeting of the Society for California Archaeology, Sacramento.

Price, Barry A., Sandra S. Flint, and Kham N. Slater

Price, Barry A., Ann M. Munns, Georgeanna Hawley, Terry L. Joslin, Douglas R. Harro, and Rebecca L. McKim

Quad Knopf, Inc.
1999 *Environmental Impact Report for Proposed Atascadero Redevelopment Plan.* On file, California Historical Resources Information System, Central Coast Information Center, University of California, Santa Barbara.

Rogers, David Banks
Sewell, Kristen Sewell, and Patrick Stanton

Singer, Clay

1998 *Cultural Resources Survey of a 69-acre Property Adjacent to Paloma Creek Near the City of Atascadero, San Luis Obispo, California.*

Stine, Scott
APPENDIX A

Cultural Resources Records Search
12/11/2019

Amber Long
Applied EarthWorks, Inc.
811 El Capitan Way, Suite 100
San Luis Obispo, CA 93401

Re: Dove Creek Storage Cultural Resource Study

The Central Coast Information Center received your record search request for the project area referenced above, located on the Atascadero USGS 7.5’ quad(s). The following reflects the results of the records search for the project area and a quarter mile radius:

As indicated on the data request form, the locations of reports and resources are provided in the following format: ■ custom GIS maps ☐ shapefiles ☐ hand-drawn maps ☐ none

Resources within project area:	No resources were located within the project area
Reports within ¼ mi. radius:	P-40-001892
Reports within project area:	SL-03645 and SL-04374
Reports within ¼ mi. radius:	See report list

The following sources of information are available at http://ohp.parks.ca.gov/?page_id=28065. Some of these resources used to be available through the CHRIS but because they are now online, they can be accessed directly. The Office of Historic Preservation makes no guarantees about the availability, completeness, or accuracy of the information provided through the sources listed below.
Please forward a copy of any resulting reports from this project to the office as soon as possible. Due to the sensitive nature of archaeological site location data, we ask that you do not include resource location maps and resource location descriptions in your report if the report is for public distribution. If you have any questions regarding the results presented herein, please contact the office at the phone number listed above.

The provision of California Historical Resources Information System (CHRIS) data via this records search response does not in any way constitute public disclosure of records otherwise exempt from disclosure under the California Public Records Act or any other law, including, but not limited to, records related to archeological site information maintained by or on behalf of, or in the possession of, the State of California, Department of Parks and Recreation, State Historic Preservation Officer, Office of Historic Preservation, or the State Historical Resources Commission.

Due to processing delays and other factors, not all of the historical resource reports and resource records that have been submitted to the Office of Historic Preservation are available via this records search. Additional information may be available through the federal, state, and local agencies that produced or paid for historical resource management work in the search area. Additionally, Native American tribes have historical resource information not in the CHRIS Inventory, and you should contact the California Native American Heritage Commission for information on local/regional tribal contacts.

Should you require any additional information for the above referenced project, reference the record search number listed above when making inquiries. Requests made after initial invoicing will result in the preparation of a separate invoice.

Thank you for using the CHRIS.

Sincerely,

Brian Barbier
Coordinator
<table>
<thead>
<tr>
<th>Report No.</th>
<th>Other IDs</th>
<th>Year</th>
<th>Author(s)</th>
<th>Title</th>
<th>Affiliation</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL-00133</td>
<td></td>
<td>1977</td>
<td>Dills, Charles</td>
<td>Archaeological Potential of Proposed Property on San Diego Road, Atascadero</td>
<td>none given</td>
<td></td>
</tr>
<tr>
<td>SL-01523</td>
<td></td>
<td>1989</td>
<td>Dills, C.</td>
<td>Archaeological potential of La Paloma Estates, Atascadero</td>
<td>Charles E. Dills</td>
<td></td>
</tr>
<tr>
<td>SL-03464</td>
<td></td>
<td>1998</td>
<td>Singer, Clay</td>
<td>Cultural resources survey of a 69 Acre property adjacent to Paloma Creek near the City of Atascadero, San Luis Obispo, California</td>
<td>C.A. Singer & Associates</td>
<td></td>
</tr>
<tr>
<td>SL-03645</td>
<td></td>
<td>1999</td>
<td>Quad Knopf</td>
<td>Environmental Impact Report for a Proposed Atascadero Redevelopment Plan</td>
<td>Quad Knopf</td>
<td></td>
</tr>
<tr>
<td>SL-04374</td>
<td></td>
<td>2000</td>
<td>Gibson, Robert O.</td>
<td>Results of Phase One Archaeological Surface Survey for the El Camino Bike Lanes Project, Phases 1 and 3, Atascadero, CA</td>
<td>Gibson's Archaeological Consulting</td>
<td></td>
</tr>
<tr>
<td>SL-04598</td>
<td></td>
<td>2002</td>
<td>Wilson, Kelda</td>
<td>Cultural Resources Review, Side Gutter Installation Project on State Route 101</td>
<td>Department of Transportation</td>
<td></td>
</tr>
<tr>
<td>SL-06509</td>
<td></td>
<td>2009</td>
<td>Kiah, Krista and MacDonald, Christina</td>
<td>Historic Property Survey Report- Atascadero Highway 101 Rehabilitation Project</td>
<td>California Department of Transportation</td>
<td></td>
</tr>
<tr>
<td>SL-06509A</td>
<td></td>
<td>2009</td>
<td>Christina MacDonald</td>
<td>Archaeological Survey Report for the Atascadero Highway 101 Rehabilitation Project, San Luis Obispo County, California</td>
<td>California Department of Transportation</td>
<td></td>
</tr>
<tr>
<td>SL-06509B</td>
<td></td>
<td>2009</td>
<td>Various</td>
<td>Attachment B: California Historic Bridge Inventory Sheet, Attachment C: Native American Correspondence, Attachment D: Historical Society Correspondence, Attachment E: ESA Action Plan</td>
<td>Various</td>
<td></td>
</tr>
<tr>
<td>SL-06892</td>
<td></td>
<td>2014</td>
<td>Hudlow, Scott M.</td>
<td>A Phase 1 Cultural Resource Survey For Atascadero Family Apartments, City of Atascadero, California</td>
<td>Hudlow Cultural Resource Associates</td>
<td>40-041259</td>
</tr>
</tbody>
</table>
Report List

<table>
<thead>
<tr>
<th>Report No.</th>
<th>Other IDs</th>
<th>Year</th>
<th>Author(s)</th>
<th>Title</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL-07064</td>
<td></td>
<td>2014</td>
<td>Leroy Laurie</td>
<td>Results of the Supplemental Phase 1 Archaeological Survey for Six Additional Parcels at the ConsciousBuild Groves at Atascadero Development in Atascadero, San Luis Obispo County, California (SWCA #30137)</td>
<td>SWCA</td>
</tr>
<tr>
<td>SL-07064A</td>
<td></td>
<td>2014</td>
<td>None Given</td>
<td>Figures</td>
<td>SWCA</td>
</tr>
<tr>
<td>SL-07418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dove Creek Storage Cultural Resource Study

Customer Name: Amber Long, Applied EarthWorks, Inc.
Project Location: Atascadero

Reports Map 2 of 5

Legend
- Project Location
- Quarter Mile Buffer
Resource List

<table>
<thead>
<tr>
<th>Primary No.</th>
<th>Trinomial</th>
<th>Other IDs</th>
<th>Type</th>
<th>Age</th>
<th>Attribute codes</th>
<th>Recorded by</th>
<th>Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-40-001892</td>
<td>CA-SLO-001892</td>
<td>Other - Dove Cemetery</td>
<td>Site</td>
<td>Historic</td>
<td>HP40</td>
<td>1998 (Clay Singer, C. A. Singer & Associates)</td>
<td>SL-06295</td>
</tr>
</tbody>
</table>
APPENDIX B

Native American Communication
November 27, 2019

Native American Heritage Commission
1550 Harbor Blvd, Suite 100
West Sacramento, CA 95691

Re: Phase 1 Cultural Resource Study for Dove Creek Self Storage in Atascadero, California.

To Whom it May Concern:

Applied EarthWorks, Inc. is conducting a cultural resource study for the development of two approximately two-acre adjoining parcels in Atascadero, California. The Project area is depicted on the attached copy of the Atascadero, CA 7.5’ Quadrangle Map and is within the unsectioned Atascadero Rancho, Township 28S, Range 12E.

This letter is being submitted to formally request your agency to conduct a search of its Sacred Lands Inventory File. Your information will aid us in determining if any other cultural properties are present within the general vicinity of the proposed Project, thereby assisting us in our environmental analysis. In addition, we are requesting the names, addresses, and phone numbers of officially recognized tribal representatives in the Project area.

Please fax the results to (805) 594-1577 and do not hesitate to call me at (805) 594-1590 if you have any questions or require additional information. Thank you for your time and consideration in this matter.

Sincerely,

Kelli Wathen,
Staff Archaeologist
Applied EarthWorks, Inc.
Location map for the Phase 1 Cultural Resource Study for Dove Creek Self Storage in Atascadero, California - AE4113.
December 5, 2019

Kelli Wathen
Applied EarthWorks, Inc.

VIA Email to: kwathen@appliedearthworks.com

RE: Dove Creek Self Storage Project, San Luis Obispo County

Dear Ms. Wathen:

A record search of the Native American Heritage Commission (NAHC) Sacred Lands File (SLF) was completed for the information you have submitted for the above referenced project. The results were positive. Please contact the yak tityu tityu yak tihini – Northern Chumash Tribe on the attached list for more information. Other sources of cultural resources should also be contacted for information regarding known and recorded sites.

Attached is a list of Native American tribes who may also have knowledge of cultural resources in the project area. This list should provide a starting place in locating areas of potential adverse impact within the proposed project area. I suggest you contact all of those indicated; if they cannot supply information, they might recommend others with specific knowledge. By contacting all those listed, your organization will be better able to respond to claims of failure to consult with the appropriate tribe. If a response has not been received within two weeks of notification, the Commission requests that you follow-up with a telephone call or email to ensure that the project information has been received.

If you receive notification of change of addresses and phone numbers from tribes, please notify me. With your assistance, we can assure that our lists contain current information. If you have any questions or need additional information, please contact me at my email address: Andrew.Green@nahc.ca.gov.

Sincerely,

Andrew Green
Staff Services Analyst

Attachment
Barbareno/ Ventureno Band of Mission Indians
Raul Banuelos, 331 Mira Flores
Camarillo, CA, 93012
Phone: (805) 427-0015

Barbareno/Ventureno Band of Mission Indians
Julie Tumamait-Stenslie, Chairperson
365 North Poli Ave
Ojai, CA, 93023
Phone: (805) 646-6214
jtumamait@hotmail.com

Barbareno/ Ventureno Band of Mission Indians
Patrick Tumamait, 992 El Camino Corto
Ojai, CA, 93023
Phone: (805) 216-1253

Barbareno/ Ventureno Band of Mission Indians
Eleanor Arrellanes, P. O. Box 5687
Ventura, CA, 93005
Phone: (805) 701-3246

Chumash Council of Bakersfield
Julio Quair, Chairperson
729 Texas Street
Bakersfield, CA, 93307
Phone: (661) 322-0121
chumashtribe@sbcglobal.net

Chumash Council of Bakersfield
Fred Collins, Spokesperson
P. O. Box 6533
Los Osos, CA, 93412
Phone: (805) 801-0347
fcollins@northernchumash.org

Salinan Tribe of Monterey, San Luis Obispo Counties
Fredrick Segobia, Tribal Representative
7070 Morro Road, Suite A
Atascadero, CA, 93422
Phone: (831) 385-1490
info@salinantribe.com

San Luis Obispo County Chumash Council
Mark Vigil, Chief
1030 Ritchie Road
Grover Beach, CA, 93433
Phone: (805) 481-2461
Fax: (805) 474-4729

Santa Ynez Band of Chumash Indians
Kenneth Kahn, Chairperson
P. O. Box 517
Santa Ynez, CA, 93460
Phone: (805) 688-7997
Fax: (805) 686-9578
kkahn@santaynezchumash.org

Xolon-Salinan Tribe
Karen White, Chairperson
P. O. Box 7045
Spreckels, CA, 93962
Phone: (831) 238-1488
xolon.salinan.heritage@gmail.com

Xolon-Salinan Tribe
Donna Haro, Tribal Headwoman
P. O. Box 7045
Spreckels, CA, 93962
Phone: (925) 470-5019
dhxolonaakletse@gmail.com

This list is current only as of the date of this document. Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resource Section 5097.98 of the Public Resources Code.

This list is only applicable for contacting local Native Americans with regard to cultural resources assessment for the proposed Dove Creek Self Storage Project, San Luis Obispo County.
yak tityu tityu yak tilhini –
Northern Chumash Tribe
Mona Tucker, Chairperson
660 Camino Del Rey
Arroyo Grande, CA, 93420
Phone: (805) 748 - 2121
olivas.mona@gmail.com

This list is current only as of the date of this document. Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resource Section 5097.98 of the Public Resources Code.

This list is only applicable for contacting local Native Americans with regard to cultural resources assessment for the proposed Dove Creek Self Storage Project, San Luis Obispo County.
December 5, 2019

Dona Haro
Xolon-Salinan Tribe,
P.O. Box 7045
Spreckels, CA, 93962

Re: Phase I Cultural Resource Study for 11450 Viejo Camino, Atascadero CA, 93422

Dear Ms. Haro:

Applied EarthWorks, Inc. is conducting a cultural resource study for the proposed development of a 4.35-acre parcel at 11450 Viejo Camino (APN 045-342-009 and 045-342-010) in Atascadero, California. The project area is depicted on the attached copy of Atascadero Rancho CA 7.5’ Quadrangle Maps and is located within an unsectioned portion of Township 28S, Range 12E.

Your name and address were provided to us by the Native American Heritage Commission (NAHC), which lists you as an individual with knowledge of Native American resources in San Luis Obispo County, California. This letter is being submitted to formally request any information you may have regarding Native American cultural resources within or adjacent to the project site. If you have information regarding the study area or have interest in the project, please call or send a letter to my attention. Your comments will be included in our cultural resources study report.

Please call me at (805) 594-1590 or email me pclarkson@appliedearthworks.com if you have any questions or require additional information. Thank you for your time and consideration.

Sincerely,

Phil Clarkson
Staff Archaeologist
Applied EarthWorks, Inc.