SECTION 6: OTHER CEQA CONSIDERATIONS

6.1 - Significant Unavoidable Impacts

CEQA Guidelines Section 15126.2(a)(b) requires an EIR to identify and focus on the significant environmental effects of the proposed project, including effects that cannot be avoided if the proposed project were implemented.

This section describes significant impacts, including those that can be mitigated but not reduced to a level of less than significant. Where there are impacts that cannot be alleviated without imposing a project alternative, their implications, and the reason why the project is being proposed, notwithstanding their effect, is described. With implementation of the proposed project, the following impacts that cannot be avoided would occur. Each significant unavoidable impact is discussed below.

- **Air Quality Attainment Plan:** The proposed project would be inconsistent with various strategies set forth in the San Luis Obispo County Air Pollution Control District Clean Air Plan. No feasible mitigation is available to reduce the severity of this impact. As such, the residual significance of this impact is significant and unavoidable.

- **Air Quality Standards/Violations:** The proposed project would generate operational emissions that would exceed regional emissions thresholds. Mitigation is proposed that would require the applicant to implement on-site and off-site emissions reduction measures; however, there is uncertainty regarding the effectiveness of the off-site measures. As such, the residual significance of this impact is significant and unavoidable.

- **Cumulative Air Quality Impacts:** The proposed project would generate operational emissions that would exceed regional emissions thresholds, which is considered a cumulative impact. Mitigation is proposed that would require the applicant to implement on-site and off-site emissions reduction measures; however, there is uncertainty regarding the effectiveness of the off-site measures. As such, the residual significance of this impact is significant and unavoidable.

- **Existing Plus Project Traffic:** The proposed project would contribute trips to facilities (Santa Rosa Road/US 101 Northbound Ramps and US 101 Southbound Ramps intersections and US 101 freeway segments) that would operate at unacceptable levels under existing conditions. Mitigation is proposed that would improve intersection operations and queuing to acceptable levels; however, no feasible mitigation is available for freeway segments. Therefore, the residual significance of this impact is significant and unavoidable.

- **Baseline Plus Project Traffic:** The proposed project would contribute trips to facilities (Santa Rosa Road/US 101 Northbound Ramps and US 101 Southbound Ramps intersections; SR-41 between Portola Road and US 101 Ramps; and US 101 freeway segments) that would operate at unacceptable levels under baseline conditions. Mitigation is proposed that would improve intersection operations and queuing to acceptable levels; however, no feasible mitigation is
available for freeway segments. Therefore, the residual significance of this impact is significant and unavoidable.

- **Future Plus Project Traffic:** The proposed project would contribute trips to facilities (Santa Rosa Road/US 101 Northbound Ramps and US 101 Southbound Ramps intersections; SR-41 between Portola Road and US 101 Ramps; and US 101 freeway segments) that would operate at unacceptable levels under future conditions. Mitigation is proposed that would improve intersection operations and queuing to acceptable levels; however, no feasible mitigation is available for freeway segments. Therefore, the residual significance of this impact is significant and unavoidable.

6.2 - Growth-Inducing Impacts

There are two types of growth-inducing impacts that a project may have: direct and indirect. To assess the potential for growth-inducing impacts, the project’s characteristics that may encourage and facilitate activities that individually or cumulatively may affect the environment must be evaluated (CEQA Guidelines Section 15126.2(d)).

Direct growth-inducing impacts occur when the development of a project imposes new burdens on a community by directly inducing population growth, or by leading to the construction of additional developments in the same area. Also included in this category are projects that remove physical obstacles to population growth (such as a new road into an undeveloped area or a wastewater treatment plant with excess capacity that could allow additional development in the service area). Construction of these types of infrastructure projects cannot be considered isolated from the development they facilitate and serve. Projects that physically remove obstacles to growth, or projects that indirectly induce growth may provide a catalyst for future unrelated development in an area such as a new residential community that requires additional commercial uses to support residents.

The Specific Plan contemplates 494 new single-family units, and 93 multi-family units, for a combined total of 587 dwelling units. Using the City of Atascadero average household size of 2.56 persons per residence, this equates to 1,503 persons.

Additionally, the project would develop up to 63 second units. Because a second unit would be accessory to the primary unit, it will be assumed that each one supports 1.28 persons (or half the 2.50 persons per household figure). This equates to 81 persons. In total, the proposed project would add 1,584 persons to the City of Atascadero’s population.

Averaged over a 10-year period, this translates to 159 persons per year and represents 0.5 percent population growth per year for the City, which is well below the General Plan growth rate of 1.3 percent growth per year. Furthermore, the City has designated the project site as an area for future development, so the increase in population would be considered planned growth. As such, impacts would be less than significant.
Nonresidential, employment-generating land uses would be limited to the highway commercial, Village Center, and resort uses. Because of the conceptual nature of these uses, a precise estimate of future employment is not possible at this time. However, for the purposes of this EIR, it will be assumed that these uses would generate 250 employment opportunities, both full-time and part-time. These types of employment opportunities would primarily consist of hospitality and service occupations, which have low barriers of entry and can be filled by individuals with a wide range of experience and qualifications. As of November 2016, there were 500 unemployed persons in Atascadero and 5,600 unemployed persons in San Luis Obispo County, indicating that there is available local labor to fill the project’s employment opportunities.

The proposed project would extend roadways, water, sewer, storm drainage, electrical, and natural gas infrastructure into the portions of Eagle Ranch that would support urban development. Eagle Ranch has been within the Atascadero Sphere of Influence since 2003 and was subdivided to support 452 residential lots and a roadway system in 1913. Eagle Ranch also has vested right to receive potable water service from Atascadero Mutual Water Company. Although the extension of the aforementioned urban services and infrastructure would facilitate the development of urban growth within Eagle Ranch, this is not considered the “removal of a barrier to growth” because the existing subdivision already permits urban levels of development and the City of Atascadero General Plan contemplates future urban development within this area. As such, development of Eagle Ranch would be considered “planned growth.”

Finally, Eagle Ranch is surrounded by the Los Padres National Forest (west and south) and the Atascadero Land Preservation Society property (west), which are permanently protected as open space areas. As such, any development that occurs within Eagle Ranch would not have the potential to serve as a catalyst for growth within these areas.

6.3 - Significant Irreversible Changes

As mandated by the CEQA Guidelines, the EIR must address any significant irreversible environmental change that would result from implementation of the proposed project. Specifically, pursuant to the CEQA Guidelines (Section 15126.2(c)), such an impact would occur if:

- The project would involve a large commitment of nonrenewable resources;
- Irreversible damage can result from environmental accidents associated with the project; and
- The proposed consumption of resources is not justified (e.g., the project results in the wasteful use of energy).

Development of the proposed project would result in an irretrievable commitment of non-renewable resources such as energy supplies and other construction-related materials. The energy resource demands would be used for construction, heating, and cooling of buildings; transportation of people and goods; heating and refrigeration; lighting; and other associated energy needs. However, the proposed project would implement a number of design features and mitigation measures that would reduce energy demand, water consumption, wastewater generation, and solid waste generation that would collectively reduce the demand for resources. This would result in the emission and generation of less pollution and effluent and lessen the severity of corresponding environmental
effects. Although the proposed project would result in an irretrievable commitment of non-renewable resources, the commitment of these resources would not be significantly inefficient, unnecessary, or wasteful.

The proposed project contemplates 494 new single-family units, 93 multi-family units, a 15.2-acre highway commercial area, a 3.9-acre Village Center, a 7.4-acre public park, a 1.6-acre equestrian staging area, 19.1 miles of roads, and 16.9 miles of trails within the project site. None of these uses would handle large quantities of hazardous materials or engage in activities that have the potential to result in serious environmental accidents (chemical manufacturing, mineral extraction, refining, etc.). As such, the proposed project would not have the potential to cause serious environmental accidents.

The proposed project would result in greater demand for resources such as energy and water; however, such consumption would not be unusually high or disproportionate relative to similar land uses (refer to Section 3.14, Utility Systems for further discussion). The proposed project would implement a number of design features and mitigation measures to reduce energy and water consumption. These design features and mitigation measures exceed state and local requirements for energy and water conservation and demonstrate that the proposed project’s consumption would not be unjustified.

6.4 - Energy Conservation

Public Resources Code Section 21100(b)(3) and CEQA Guidelines Section 15126.4 require EIRs to describe, where relevant, the wasteful, inefficient, and unnecessary consumption of energy caused by a project. In 1975, largely in response to the oil crisis of the 1970s, the State Legislature adopted Assembly Bill (AB) 1575, which created the California Energy Commission (CEC). The statutory mission of the CEC is to forecast future energy needs, license thermal power plants of 50 megawatts or larger, develop energy technologies and renewable energy resources, plan for and direct state responses to energy emergencies, and—perhaps most importantly—promote energy efficiency through the adoption and enforcement of appliance and building energy efficiency standards. AB 1575 also amended Public Resources Code Section 21100(b)(3) to require EIRs to consider the wasteful, inefficient, and unnecessary consumption of energy caused by a project. Thereafter, the State Resources Agency created Appendix F of the CEQA Guidelines. Appendix F is an advisory document that assists EIR preparers in determining whether a project will result in the inefficient, wasteful, and unnecessary consumption of energy. For the reasons set forth below, this EIR concludes that the proposed project will not result in the wasteful, inefficient, and unnecessary consumption of energy, will not cause the need for additional natural gas or electrical energy-producing facilities, and, therefore, will not create a significant impact on energy resources.

6.4.1 - Regulatory Setting

Federal and state agencies regulate energy use and consumption through various means and programs. At the federal level, the United States Department of Transportation, the United States Department of Energy, and the United States Environmental Protection Agency are three federal agencies with substantial influence over energy policies and programs. Generally, federal agencies
influence and regulate transportation energy consumption through establishment and enforcement of fuel economy standards for automobiles and light trucks, through funding of energy-related research and development projects, and through funding for transportation infrastructure improvements. At the state level, the California Public Utilities Commission (CPUC) and the CEC are two agencies with authority over different aspects of energy. The CPUC regulates privately owned utilities in the energy, rail, telecommunications, and water fields. The CEC collects and analyzes energy-related data, prepares statewide energy policy recommendations and plans, promotes and funds energy efficiency programs, and adopts and enforces appliance and building energy efficiency standards. California is exempt under federal law from setting state fuel economy standards for new on-road motor vehicles. Some of the more relevant federal and state energy-related laws and plans are discussed below.

Federal Energy Policy and Conservation Act

The Federal Energy Policy and Conservation Act of 1975 sought to ensure that all vehicles sold in the U.S. would meet certain fuel economy goals. Through this Act, Congress established the first fuel economy standards for on-road motor vehicles in the U.S. Pursuant to the Act, the National Highway Traffic and Safety Administration, which is part of the United States Department of Transportation, is responsible for establishing additional vehicle standards and for revising existing standards. Since 1990, the fuel economy standard for new passenger cars has been 27.5 miles per gallon. Since 1996, the fuel economy standard for new light trucks (gross vehicle weight of 8,500 pounds or less) has been 20.7 miles per gallon. Heavy-duty vehicles (vehicles and trucks over 8,500 pounds gross vehicle weight) are not currently subject to fuel economy standards. Compliance with federal fuel economy standards is not determined for each individual vehicle model; rather, compliance is determined on the basis of each manufacturer’s average fuel economy for the portion of their vehicles produced for sale in the United States. The Corporate Average Fuel Economy (CAFE) program, which is administered by United States Environmental Protection Agency, was created to determine vehicle manufacturers’ compliance with the fuel economy standards. The United States Environmental Protection Agency calculates a CAFE value for each manufacturer, based on city and highway fuel economy test results and vehicle sales. On the basis of the information generated under the CAFE program, the United States Department of Transportation is authorized to assess penalties for noncompliance. In the course of its over 30-year history, this regulatory program has resulted in vastly improved fuel economy throughout the nation’s vehicle fleet.

Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA)

The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) promoted the development of inter-modal transportation systems to maximize mobility as well as address national and local interests in air quality and energy. ISTEA contained factors that Metropolitan Planning Organizations (MPOs) such as ABAG were required to address in developing transportation plans and programs, including some energy-related factors. To meet the new ISTEA requirements, MPOs adopted explicit policies defining the social, economic, energy, and environmental values that were to guide transportation decisions in that metropolitan area. The planning process for specific projects would then address these policies. Another requirement was to consider the consistency of transportation planning with federal, state, and local energy goals. Through this requirement, energy consumption
was expected to become a decision criterion, along with cost and other values that determine the best transportation solution.

The Transportation Equity Act for the 21st Century (TEA-21)

The Transportation Equity Act for the 21st Century (TEA-21) was signed into law in 1998 and builds upon the initiatives established in the ISTEA legislation discussed above. TEA-21 authorizes highway, highway safety, transit, and other efficient surface transportation programs. TEA-21 continues the program structure established for highways and transit under ISTEA, such as flexibility in the use of funds, emphasis on measures to improve the environment, and focus on a strong planning process as the foundation of good transportation decisions. TEA-21 also provides for investment in research and its application to maximize the performance of the transportation system through, for example, deployment of Intelligent Transportation Systems, to help improve operations and management of transportation systems and vehicle safety.

State of California Energy Plan

The CEC is responsible for preparing the State Energy Plan, which identifies emerging trends related to energy supply, demand, conservation, public health and safety, and the maintenance of a healthy economy. The plan calls for the State to assist in the transformation of the transportation system to improve air quality, reduce congestion, and increase the efficient use of fuel supplies with the least environmental and energy costs. To further this policy, the plan identifies a number of strategies, including providing assistance to public agencies and fleet operators, encouraging urban designs that reduce vehicle miles traveled, and accommodating pedestrian and bicycle access.

Title 24, Energy Efficiency Standards

Title 24, which was promulgated by the CEC in 1978 in response to a legislative mandate to create uniform building codes to reduce California’s energy consumption, provides energy efficiency standards for residential and nonresidential buildings. According to the CEC, since the energy efficiency standards went into effect in 1978, it is estimated that California residential and nonresidential consumers have reduced their utility bills by at least $15.8 billion. The CEC further estimates that by 2011, residential and nonresidential consumers will save an additional $43 billion in energy costs.

6.4.2 - Energy Requirements of the Proposed Project

Short-term construction and long-term operational energy consumption are discussed below.

Short-Term Construction

The proposed project would entail short-term construction activities that would consume energy, primarily in the form of diesel fuel (e.g., mobile construction equipment) and electricity (e.g., power tools). Construction activities would be required to monitor air quality emissions using applicable regulatory guidance. The policy indirectly relates to construction energy consumption because construction air pollutant emissions are reduced through functions of energy consumption. Finally, there are no aspects of the proposed project that would foreseeably result in the inefficient, wasteful, or unnecessary consumption of energy during construction activities. For example, there
are no policies that would directly or indirectly cause construction activities to be any less efficient than would otherwise occur elsewhere (restrictions on equipment, labor, types of activities, etc.). In summary, the proposed project would not result in the inefficient, wasteful, or unnecessary consumption of energy during construction activities.

Long-Term Operations

Transportation Energy Demand

Vehicle fuel efficiency is regulated at the federal level. Pursuant to the Federal Energy Policy and Conservation Act of 1975, the National Highway Traffic Safety Administration (NHTSA) is responsible for establishing additional vehicle standards and for revising existing standards. As of December 2014, NHTSA indicated that the fuel economy of passenger vehicles averaged 34.2 miles per gallon and light trucks averaged 26.2 miles per gallon. Fuel economy for heavy trucks averages 6.5 miles per gallon, although this is not regulated by the NHTSA.

Table 6-1 summarizes annual transportation fuel consumption for all project-related trips at buildout. On an annual basis at buildout, project-related trips would consume 524,249 gallons of gasoline or diesel.

<table>
<thead>
<tr>
<th>Vehicle Classification</th>
<th>Fleet Mix</th>
<th>Annual Vehicle Miles Traveled</th>
<th>Fuel Economy (miles per gallon)</th>
<th>Fuel Consumption (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Automobiles</td>
<td>46.0%</td>
<td>3,629,065</td>
<td>34.2</td>
<td>106,113</td>
</tr>
<tr>
<td>Light Trucks/Sport Utility Vehicles</td>
<td>26.0%</td>
<td>2,051,211</td>
<td>26.2</td>
<td>78,290</td>
</tr>
<tr>
<td>Medium Trucks/Heavy Trucks/ Buses</td>
<td>18.0%</td>
<td>2,208,996</td>
<td>6.5</td>
<td>339,846</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>7,889,272</td>
<td></td>
<td>524,249</td>
</tr>
</tbody>
</table>

Source: CalEEMod, 2016.

The proposed project includes several trip reduction design features. The proposed project would locate multi-family residential uses (including affordable housing) adjacent to the Village Center, thereby allowing residents the opportunity to walk instead of drive. Additionally, Eagle Ranch would provide more than 16 miles of trails that would connect to existing bicycle and pedestrian facilities in the City of Atascadero and create opportunities for use of these modes of transportation. Finally, the project would either enhance the existing park-and-ride lot at the US 101/Santa Barbara Road interchange or provide a new one at an alternative location, which would enhance carpooling opportunities. In summary, the proposed project would not result in the inefficient, wasteful, or unnecessary consumption of transportation energy during operational activities.

Building Energy Demand

As discussed in Section 3.14, Utility Systems, the proposed project is estimated to demand 6.1 million kWh of electricity and 36.0 million cubic feet of natural gas at buildout on an annual basis.
All new residential and non-residential development would be subject to the latest adopted edition of the Title 24 energy efficiency standards, which are among the most stringent in the U.S. As such, the proposed project would not result in the unnecessary, wasteful, or inefficient use of energy.